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Abstract:

The exponential growth of cloud-centric and real-time applications has revealed the inherent limitations
of conventional electrical packet-switched Data Center Networks (DCNSs), which suffer from bandwidth
bottlenecks, high latency, and inefficient resource utilization. Optical circuit-switched DCNs offer
superior bandwidth and data rates; however, their slow reconfiguration times restrict their applicability in
dynamic, heterogeneous traffic environments. To address these challenges, this paper presents a Dynamic
QoS Management Framework within a Reconfigurable Optical DCN Architecture designed for adaptive
traffic control and efficient resource allocation.

The proposed system, termed the Passive Optical Data Center Switch (PODS), integrates Arrayed
Waveguide Grating Router (AWGR) technology with an intelligent control unit capable of real-time traffic
classification, buffer reuse, and heuristic-based path optimization. A loopback-enabled reconfiguration
mechanism dynamically reallocates optical paths, alleviating congestion and ensuring consistent QoS
across diverse service classes.

Extensive simulations—implemented in Python on the Google Colab platform—demonstrate that PODS
achieves a 46.3% reduction in latency and a 5% improvement in network load compared to the existing
Passive Optical Data Center Architecture (PODCA). A hardware prototype comprising 7 Top-of-Rack
(ToR) switches and Raspberry Pi-based control modules, interconnected via 112 optical links across 16
wavelengths, further validates the design. Experimental results confirm an 18.3% reduction in blocking
probability and zero blocking for high-priority traffic under full load, highlighting the architecture’s real-
time adaptability.

By combining passive optical components with intelligent QoS-aware control, PODS delivers a scalable,
energy-efficient, and latency-optimized solution for next-generation data centers. This work establishes a
foundation for self-adaptive optical DCNs capable of meeting the stringent performance and reliability
demands of cloud-centric computing environments.

Keywords: - Optical DCN, AWGR, QoS Provisioning, Wavelength Assignment
1. Introduction

The rapid growth of data-intensive applications has driven the evolution of next-generation Data
Centers toward adopting advanced architectures and novel technologies that enhance throughput, latency,
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scalability, and power efficiency [1]. At the forefront of this transformation are optical Data Center
Networks, which employ a range of optical switching technologies such as Semiconductor Optical
Amplifier (SOA)-based switches, Micro-Electro-Mechanical Systems (MEMS) switches, and Arrayed
Waveguide Grating Routers (AWGRS).

MEMS switches, utilized in systems like c-through [2] and Helios [3], offer reconfigurable optical
switching through electromechanical actuation. However, their relatively high reconfiguration time limits
their suitability for high-speed packet-switched DCNs. To overcome these constraints, several hybrid
electro-optical interconnect architectures have been proposed [4-5], most relying on centralized
schedulers that dynamically adapt to fluctuating network traffic. In contrast, RotorNet employs a
predefined static scheduling scheme, making it less responsive to real-time traffic variations [6].

AWGRs, with their cyclic wavelength routing property, effectively resolve contention in the
wavelength domain, enabling multiple inputs to reach the same output simultaneously. This feature has
inspired several AWGR-based DCN architectures [7], including DOS [8] and Petabit [9-10], which
incorporate Tunable Wavelength Converters (TWCs) for flexible wavelength allocation [11]. Although
these systems deliver high performance, TWCs remain power-intensive, increasing energy overhead. To
address this, the Passive Optical Data Center Architecture (PODCA) [12] integrates AWGR and TWC
under a centralized Control Unit that dynamically assigns wavelengths, achieving packet latencies below
9 us. While PODCA outperforms DOS and LIONS architectures in latency, it provides lower throughput
compared to them [13].

To mitigate these trade-offs, this paper proposes a hybrid optical framework that synergistically
combines the strengths of PODCA, DOS, and LIONS architectures to achieve higher throughput and
reduced latency, thereby optimizing overall network performance. Furthermore, flexible Quality of
Service (QoS) provisioning and scalable scheduling remain major design challenges [14-15]. Ongoing
research focuses on addressing demand estimation, bandwidth reconfiguration [16-17], and switch
interoperability in future DCNs [18-19]. Emerging paradigms such as synergistic switched-control optical
networks, capable of nanosecond-level path configuration, and Software-Defined Networking (SDN)-
enabled optical systems [20-21], have shown promise in improving contention resolution and enabling
adaptive, flow-aware traffic management in the optical domain.

This paper delves into these advancements, presenting a comprehensive approach that amalgamates
cutting-edge technologies and methodologies to enhance the performance and scalability of future data
center networks. By leveraging the combined strengths of existing architectures and addressing key
challenges in QoS and scheduling, we pave the way for the next generation of high-performance optical
data center networks.

In this paper, the main contribution is to:

e Propose a Re-configurable, Dynamic QoS Provisioned DCN Architecture: We introduce a novel
DCN architecture that integrates a scalable switch with dynamic QoS provisioning. This architecture
features path reconfiguration through re-routing by different wavelength assignments and dynamic
buffering to prevent packet loss, all within a single, cohesive module.

e Priority Buffering Algorithm: We propose a heuristic algorithm that runs over the DCN
architecture where packets are initially stored in a priority buffer. If the requested service class buffer
is unavailable, packets are redirected to the next available buffer before being forwarded. This
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approach ensures efficient utilization of buffer resources and enhances the overall network
performance.

e Loopback Methodology for Path Reconfiguration: To address wavelength unavailability, a
loopback methodology [22] is incorporated that assigns different wavelengths for forwarding, which
reconfigures the packet path, ensuring successful forwarding to the proper destination. This
technique significantly reduces network congestion and enhances data flow reliability.

e Dynamic Packet Transmission Priority: Packet transmission priorities are dynamically assigned
[16] to support mixed traffic. Higher-priority packets are forwarded directly to their destinations
without retransmission or requiring the loopback method. This dynamic assignment minimizes delay
and maximizes network efficiency.

e Reduction of Packet Loss, and Blocking Probability: Integration of all the above-mentioned
methodologies, effectively reduces packet loss, and the blocking probability [23] of the entire
network ensuring robust, efficient, and scalable DCN architecture.

The structure of the paper is as follows: Section Il outlines the proposed PODS-based DCN
architecture model and its operational mechanisms. Section Il delves into the mathematical modeling
employed for buffer and wavelength assignment. Section 1V details the simulation process and presents
the results of the analysis. In Section V, the test bench experimental model of the PODS-based DCN
architecture, implemented using Raspberry Pi, is described. The experimental results are subsequently
discussed in Section VI. Finally, Section V11 provides the concluding remarks of the paper.

2. PODS-based DCN architecture model and Working Principle

The proposed PODS-base DCN architecture with a control unit [24] is shown in Fig. 1(a). The
proposed model consists of ToR, AWGR, transmitter (TX) and receiver (RX) modules. Each ToR is
connected to the end users or servers. The rest of the ports of the ToR are configured as input ports and
output ports respectively. The input port of the AWGR is connected to the ToR via TX module and the
output port of the AWGR is connected to the ToR via the RX module respectively as shown in Fig. 1(b)
and Fig. 1(c). The TX module of each ToR consists of an electrical buffer (EB), optical channel adapter,
optical label generator (OLG), packet encapsulator (PE), and electro-optic converter (lasers) to send the
incoming packets to the AWGR through TWC. After passing through the TWC, wavelengths are
combined by an Optical Multiplexer (OMUX) and finally reach the input port of the AWGR. The RX
module consists of an Optical Demultiplexer (ODMUX) followed by an optical receiver called an optical-
to-electrical converter (OE converter), electrical buffer (EB), and packet adapter (PA).

In this architecture, the generated packets from the server, first arrive to any input ToR (ToR;y), then
as per the service class of the packet, they are placed in the shared buffer marked as EB as shown in Fig.
1(b), similarly when the packets are out from the ToR gyt port of AWGR, after demultiplexing the packets
they are converted to optical to electrical and stored in a shared buffer of ToR RX module as shown in
Fig. 1(c). As per the service class of the packet, the priority level of the buffer is set. In this paper we only
consider four types of service class traffic, and based on it buffers are classified as high-priority real-time
(HRT), standard-priority real-time (SRT), Earliest Deadline First (EDF), First-Come-First-Served
(FCFS). Round-robin processing is used to handle packets from the buffer.

The number of buffers allocated to any service class is based on the incoming traffic requirement.
Thus, the optimal architecture is determined by allocating a certain number of buffers under each service
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class. The network's performance is then evaluated in software and hardware platforms in terms of
maximum network load, latency, and blocking probability by reusing the buffer of a different service class
(if it is empty) and rerouting wavelengths using the loopback method. Fig. 2 shows the flow chart for the
proposed algorithm and the function of the PODS-based DCN architecture.
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Fig. 1c RX module of PODS

Fig. 1a PODS-Based DCN Architecture
Fig. 1 PODS System model

To describe the performance of the system model we consider:

P is the total number of ports of AWGR. Out of P number of ports, some ports are connected to the ToR,
and the rest of the ports are used for the loopback path for route reconfiguration. We denote W as the
number of available wavelengths and let W=Px F where F > 1 is an integer. Wavelength w is denoted as
Aw, Where w is the wavelength index. The AWGR routes #wavelengths from an #input port to a specific
#output port in a cyclic way and is denoted as A3, means it is routed from input port S with wavelength w
to reach the desired output port.

#wavelength=(# output port + # input port)%no. of port - 1 + fxno of port, where f € F Q) [2]

Let B be the number of shared buffers in each ToR. B number of shared buffers is further subdivided
into Bs, B2, Bz and B4. Where B1 number of buffers assigned for HRT, B> number of buffers assigned for
SRT, Bz number of buffers assigned for EDF and B4 number of buffers assigned for FCFS. Each Packet
having the same priority level is placed in the same priority buffer in a round-robin manner. The number
of By, B2, B3, and B4 buffers are finalized based on the arrival rate of a particular service type. In our model
we consider a greater number of buffers in By rather than Bz, Bz and Bs to reduce less loss in HRT traffic
in terms of blocking probability. Additionally, packets may be placed in just below priority buffers, if the
high priority buffers are unavailable. Depending upon the set of priorities, the packets are selected from
the front of each buffer for transmission. Then the packets are ready for transmission and the wavelength
is assigned depending on the output port number as per eq. (1). If the wavelength is not available for
transmitting the packet to the destination port, the data is sent to the loopback port, and the data is
forwarded to the output port with a different wavelength.
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Table 1 shows the variables used to develop the analytical modeling of the proposed architecture.

Table 1. List of variables used in the architecture

Notation Corresponding Meaning

P Number of ports in AWGR
W Number of available wavelengths in the system
|F Number of wavelengths used for every pair of input-output port

Aw w is the wavelength index

45,0 25Pthe wavelength w is selected for packet transmission from S™ input port
w PN to D™ output port P9UT

A-Pthe wavelength w is selected for packet transmission from L™ loopback

input port PN to D output port PUT

IB The number of shared buffers is subdivided into B1, B2, Bz and Ba

PN S™input port in AWGR

PYT D" output port in AWGR

L,D
Ay

pid Packet transmits from m™ buffer of S™ input port PN to D™ output port

S,D
Pkpidm PgUT.
Pr_bli] Packet stored in the priority buffer Pr_b[i] where i € B.
Po Blocking Probability

This flowchart illustrates the decision-making process for handling packets in a PODS-based Data Center
Network based on service type and buffer availability.
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Fig. 2 Flowchart of PODS-Based DCN Architecture

3. Mathematical Modelling for Buffer and Wavelength assignment
To minimize the blocking probability (Pb), maximize Pr_bJ[i] i € B

Py is calculated as the ratio of the number of packets not successfully placed to the total number of packets
generated:

p = total_packets_generated — successful_placement_counter (2)
p =

total_packets_generated

To maximize packet transmission Eq. 3 should be maximized subject to the condition described in Eq. 4,
Eq.5, and Eq.6.

Maximize:

Yspm Phyig™ 3)
S.t.:

VA2 =0 forthe packet Pkg‘ig’m (4)
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or,
P =0 for the packet Pkg’iz'm (5)
and A2 =0 for the packet Pk;’ig’m (6)

Algorithm of Packet Scheduling through Control Panel:
PROCESS 1: [PACKET CREATED AND STORED IN SELECTED BUFFER]

1. Initialize Variables

a.  successful_placements = 0 (packets), total_packets = 0 (Count of total packets generated)
b.  Pr_bl[i] (Priority buffer, wherei e B, 1 <i<4)

c.  Nj(Number of buffers under each Priority buffer type Pr_b[i])

d index; (Next available position index in buffer type i)

2. For each arriving packet:
I. Determine the “service_type" of the packet.
Il.  Select the appropriate buffer type Pr_b [i] based on “service_type™ and buffer priority.
I1l.  If buffer Pr_b[i] has space (indexi < Ni):
IV. Store the packet in Pr_b [i] at index; .
V. Increment index; and Increment “successful_placements’.
VI. If buffer Pr_b [i] is full:
VII.  Search for an available lower-priority buffer (Pr_b [j] # Pr_b [i]).
VIII.  Store the packet in the first available buffer and Increment “successful_placements’.
IX. Increment total_packets.
Repeat steps I-1X for all ports.

Calculate the overall blocking probability Py, as the ratio of the number of packets not successfully placed
to the total number of packets generated:

PROCESS 2: [ ASSIGN WAVELENGTH FOR ROUTING]
1. Establish the retrieval order for packets from the buffer Pr_b[i], where i € B.

__ number of wavelengths

number of ports in AWGR
where the number of wavelengths is an integer multiple of the number of ports:
number of wavelengths = (integer factor) x number of ports in AWGR.

2. ForeachiinB:
a. Extract the leading packet from the priority buffer Pr_b[i] based on the input port index and
output port index.
b. Determine the corresponding wavelength index for the AWGR
c. ForeachfinF:
Compute the wavelength index as:
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I.  wavelength=(#output port+#input port)ymod number of ports—1+fxnumber of ports,
where feF
ii.  Ifthe computed wavelength is accessible, the TWC is adjusted accordingly, and the packet
is scheduled for transmission.
d. If the desired wavelength is occupied for the given output port, the packet is redirected through
a loopback port and reassigned to the output port using an alternate wavelength.
e. For each available loopback port, check the feasibility of using an alternative wavelength pair
to forward the packet from the input port to the loopback port and then to the final output

port.

1. If a valid wavelength pair is identified, configure the corresponding TWC and schedule

the packet for transmission.

ii. If no suitable wavelength pair is available, the packet undergoes additional delay via the

loopback path. If no transmission route is found, the packet is marked as Blocked.

4. Simulation Results

In the simulation, the packets are dynamically created with different service classes and assigned a
random destination address. The interarrival rate follows poison distribution. To optimize the process,
maximize the number of packets placed in the buffers considering the priorities and availability of the

buffer.
Table 2: List of the parameter values considered for simulation
SINo.  Name of Parameters Values
1 Tuning time of tunable transmitters 8ns
The size of a packet 1500 bytes and interarrival follow Poisson
distribution
3 Buffer size of each ToR 256MB
4 Total no. of buffer under each ToR 116
I5 No. of service Class 4 (B1-(HRT), B2-(SRT), B3-(EDEL), and B4-
(FCFS)
|6 Distribution of buffer under each Bl=44, B2=34, B3=23 and B4=14
service class
7 The traffic arrival rate per ToR 40 Gbps
3 Size of AWGR 128x128
|9 No. of available wavelength 256
10 No. of AWGR port used for loopback  10% of 128 =13
11 No. of ToR connected in AWGR port 115
12 Data Transmission speed achieved (115x116x40Gbps) ~533Tbps

We use Integer linear programming (ILP) as a mathematical tool to maximize the wavelength
allocation for packet transmissions in a slot. We coded the algorithms in Python and executed them on
Google COLAB in the Windows environment to find the performance of the proposed architecture and
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compared it with PODCA architecture. For simulation purposes, we have assigned the transmission rate
of a tunable transmitter (and wavelength capacity) to be 40 Gbps as per reference [12]. Table 2 shows the
parameter values considered for simulation.

The total latency and network load of the framework is calculated as
Latency = Transmission time + Average queuing delay in the buffer.

NO OF PACKET CURRENTLY TRANSMIT

Network Load = {3 'NO OF PACKET CAN TRANSMIT THROUGH AWGR PORT

To find the performance of the network, in terms of network load and latency, the arrival rate of the
packet is increased from 0.1Gbps to 36Gbps. Fig. 3 shows the simulation snapshot of PODS-based DCN
architecture as executed in the Google Colab environment. This figure illustrates the configuration and
execution of the architecture, highlighting the key components and their interactions.

C 25 colab.research.google.com/drive/1Ko1tglQ8Qd8DDaRqjpngmKi8OUC1eNKH
Google Maps ¢y Empire @ 24online  E=3 24Online Client  pf Juicer, Mixer & Gri.. [ Imported From |

& PODS Simulator.ipynb *

File Edit View Insert Runtime Tools Help Allchanges saved

- Code + Text

° 389 # Start all the threads
390 for t in threads:
391 t.start()
392
393 # Wait for all the threads to finish
394 for t in threads:
395 t.join()
396
397 logging.debug('Waiting for worker threads®)
398 time.sleep(1)
399 for index, thread in enumerate(threads):
400 logging.info("Main : before joining thread %d.™, index)
401 thread.join()
402 logging.info("Main : thread %d done", index)
403 Service_Time =Service_Time + 0.3
404 print(No_Of_Tor,” ",outer3_i,"” " ,outer2_i)
405 Arrival_Rate = Arrival_Rate - 03
406

407 print/(df_ANALYSIS_DATA)|

408 df_ANALYSIS_DATA.to_csv('file_simu.csv', header=True, index= True)

409 df_ANALYSIS_DATA.to_csv(r'C:\Users\souga\Desktop\file_simu.csv')

410 # Download the CSV file

411 files.download('file_simu.csv')
C

.
| THIS IS THE SIMULATION OF PASSIVE OPTICAL DATACENTER SWITCH (PODS) ALGORITHMS RUN IN THE ILP METHODS 1
| No Of Port in AWGR: 128

|
| No Of Priority Buffer : 116 NETWORK I
| No_of_lWavelength : 256 CONFIGURATION 1
lNO Oof TOR : 109 1

j_LoopBack Port are : [109 11@ 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127] |
Yy X LS - 5 TT- L ———— 1
:Ar‘r‘ival_Rate : 3@ Gbps OUTPUT: ONE OF 1

NETWORK LOAD : ©.84376 —> REF.IN TABLE 2 1
I % OF LOOPBACK PATH : 4.4534 % R CULLERSTION I
| BLOCKING PROBABILITY : ©.002345 —> REF.IN TABLE 4 1

Fig. 3 Snap of PODS-based DCN Architecture executed in the Google Colab Environment
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The Average Packet Latency Time (L,yg) is computed as the aggregate of three fundamental

components: the transmission time, the average queuing delay, and the delay introduced by loopback path
reconfiguration. Mathematically, this is represented as:

Lavg =T + Tqueue + Tloopback

Where:
e T= Transmission time (time to send a packet over the optical link)
T = % S: Packet size, R: Data rate
e Tqueue= Average queuing delay (time the packet waits in the buffer before being scheduled)
Tqueue = u_ik w: Service rate of the buffer (packets/sec), A: Arrival rate (packets/sec)
o Tioopback=Additional delay due to loopback path reconfiguration (only when no direct wavelength
is available)

o Tigopback = 6.-Pgop ~ 8: Fixed delay penalty for loopback traversal (includes retuning + re-
buffering), Py,0p: Probability of a packet requiring loopback
By optimizing each component through architectural and scheduling improvements, we aim for the
following target values:
e Transmission Time (T ) = 0.3 ps (achieved by using faster transceivers or reducing packet size),
o Queuing Delay ( Tgueue ) = 2.0 ps (through increased buffer capacity and priority-aware
scheduling),
« Loopback Delay (Tioopback ) = 0.7 Ws (by minimizing the loopback probability using efficient
wavelength assignment).
Substituting these values into the latency equation:

Lavg = 0.3ps + 2.0 us + 0.7 ps = 3.0 us

This optimized latency confirms that through strategic architectural enhancements, the proposed PODS-
based DCN can meet the requirements of modern cloud-centric, real-time applications.

Table 3 shows the values of network load measured through simulation under different packet arrival
rates for two different architectures under study. Fig. 4 illustrates the graphical representation of network
load as a function of packet arrival rate. From the result, we see that for a 36 Gbps arrival rate, the network
load reached 100% in the PODCA-S architecture. Still, in the case of PODS-based architecture, it becomes
95.4%, ensuring the enhanced scalability of the proposed architecture.

Table 3. Network Load with packet arrival rate for different architecture under study

N/W Load in PODS(%0) 16.12 2537 | 37.14 | 53.2 |68.24 |83.87 954
N/W Load in PODCA-S(%0) 17.21 27.25 | 4524 | 652 |82.03 |95.12 | 100

IJSAT25049265 Volume 16, Issue 4, October-December 2025 10
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ARRIVAL RATE vs NETWORK LOAD
Average packet latency 3 s
== N/W Load in PODS(%) == N/W Load in PODCA-S(%)
100
75

50

25

% OF NETWORK LOAD

0 10 20 30

Arrival Rate(Gbps)
Fig. 4 Arrival Rate vs Network Load for different Architecture under study

Table 4 and Fig. 5 represent the latency of the network under study to arrival rate. At 36 Gbps arrival
rate, the PODS architecture had a latency of 4.78 microseconds, whereas PODCA-S architecture exhibited
a higher latency of 8.9 microseconds.

So, the latency of the network is reduced by 46.3% in the case of PODS-based DCN architecture,
ensuring, its ability to process data more quickly and efficiently, making it more suitable for cloud-centric
applications including low-latency communication, such as real-time data processing and high-frequency
trading.

Table 4. Variation of latency with packet arrival rate for different protocol under study

PODS Latency (ps) 2.1 2.27 2.45 2.28 3.35 3.82 4.78
PODCA-S Latency (ps) 2.1 2.4 3.2 3.9 4.65 6.3 8.9

IJSAT25049265 Volume 16, Issue 4, October-December 2025 11
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ARRIVAL RATE vs AVERAGE PACKET LATENCY (us)

== PODS Latency (us) == PODCA-S Latency (us)
10

4 -

0 10 20 30

AVERAGE LATENCY (ns)

Arrival Rate(Gbps)
Fig. 5 Arrival Rate vs Average latency for the different protocol under study

From the above results, it is observed that for advanced switching and scalability PODS-based DCN
architecture works better than that of PODCA architecture. So, for cloud-centric real-time applications, it
will provide a more prominent solution. Further to find the performance in terms of the blocking
probability of PODS-based DCN architecture, two cases are considered separately: using loopback and
without using the loopback method. Table 5 and Fig. 6 show the blocking probability of the PODS-based
architecture for different network loads. Observation shows 92% improvement in blocking in the case of
PODS-based architecture using loopback.

Table 5. Blocking Probability with Network Load for PODS-based architecture

Blocking Probability in PODS with
loopback

0 0 0.001 0.004 | 0.0069 | 0.009

Blocking Probability in PODS

. 0.0535 | 0.061 |0.068 |0.076 |0.084 |0.095 |0.113
without loopback

IJSAT25049265 Volume 16, Issue 4, October-December 2025 12
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Fig. 6 Plot for Blocking Probability vs Network Load

The simulation confirms that the proposed PODS-based DCN architecture offers superior
performance over PODCA-S, achieving up to 46.3% lower latency and reduced blocking probability by
92% with loopback. It also maintains a high network load capacity (95.4% at 36 Gbps) without saturation,
demonstrating better scalability and efficiency. These results highlight its suitability for cloud-centric,
low-latency applications.

5. Test Bench Implementation of the proposed model using Raspberry Pi

From the simulation result, we find that the PODS-based architecture using loopback provides an
optimum solution in terms of network load, latency, and blocking probability for cloud cloud-centric real-
time application environment. To validate the architecture in the hardware platform we developed a
comprehensive test bench in our laboratory, consisting of seven servers. The AWGR and the control unit
were implemented on Raspberry Pi module.

Hardware Configuration

Raspberry Pi Implementation
e Model: Broadcom BCM2711, Quad-core Cortex-A72 (ARM v8) 64-bit.
e Purpose: Implementation of the 8x8 AWGR and Control Unit.
e GPIO Ports: Port assignments are as follows:
o Input Ports: PIN 11, 13, 15, 29, 31, 35, and 37.
o Output Ports: PIN 16, 18, 22, 32, 36, 38, and 40.
o Loopback Paths: Two GPIO ports were dedicated to loopback paths for input and output.
Servers

e Configuration:
o Processor: Intel Core i7-12700T, 1.40 GHz.
o RAM: 8GB DDR4 3200MHz.
o Storage: 512GB SSD.
e Role: These servers functioned as Top-of-Rack (ToR) units.
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Connectivity and Pin Configuration
e Server Connections:
o Seven GPIO ports of the Raspberry Pi were connected to the seven servers acting as TORS.
o The connections ensured proper data flow management and control between the Raspberry
Pi and the servers.

Memory Management
e Memory Allocation:
o Atotal of 7GB of memory, was allocated within the Raspberry Pi for packet buffering.
o Each input port was allocated 1GB of memory.

o This 1GB was further subdivided into smaller buffers (B1, B2, B3, and B4) of variable
sizes to manage incoming packets efficiently.

TOR TOR
/PC piN P2 _ /PC
TOR N TOR
/PC - PRUII—> W% /oc
TOR . TOR
/PC P POy > /PC
TOR TOR
/PC P{" RASPBERRY poUT=——> JPC
- P, 4 — .

ODDEDDLD

Pl
TOR TOR
IN
PC P, 8x8 OUT ey
/ 5 Ps = /PC
TOR TOR
IN
e —
TOR IN TO
G p7 P'IOU — /Pg
-— .
PéN PSOU

Fig. 7 Test Bench Setup Block Diagram

Fig. 7 illustrates the block representation of the test bench, showing the connection of Raspberry Pi and 7
servers (acting as TORS).
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The memory allocation for the Raspberry Pi is shown in Fig. 8. Each input port is allocated 1GB of
buffered memory, which is divided into four buffers: B1, B2, B3, and B4, each with different sizes. The
Raspberry Pi module and its pin configuration are shown in Fig. 9. The test bench implementation of the

b

I B1 (HRT)
Memory Buffer of 7GB HE B2 (GRD
Eea B3 (EDF)
AEK
TR B4 (FCFS)
Memeory Buffer of 1GB
E 3
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EE
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EeT3
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I ST }-B‘l (HRT)
Frr3
T
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e
£ B3 (EDF)
s B4 (FCFS)
proposed model is shown in Fig. 10.
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Fig. 8 Buffer allocation scheme in the proposed test bench implementation
Fig. 9 Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit Raspberry-Pi module and its pin
configurations
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Fig. 10 Test bench implementation model of the proposed architecture

6. Experimental Results

In the experimental setup, 16 wavelengths are utilized for packet transmission from source to
destination. Communication between the source and destination is facilitated through a socket connection
established via the Raspberry Pi model. Each Top of Rack (ToR) switch is capable of using all 16
wavelengths for packet transmission, resulting in a total of 112 possible communication links (7 ToRs x
16 wavelengths).

Table 6. Buffer Allocation based on service type in terms of network Load per ToR

3 3 2 2 1
2 3 3 2 1
10 3 3 2 1
11 4 3 2 2
12 4 3 3 2
13 4 4 3 2
14 5 4 3 2
15 S} 4 3 2
16 3) 5 3 2

The network load is categorized into four distinct service classes, with traffic distribution as follows:
35% allocated to High-Real-Time (HRT) traffic corresponding to Buffer 1 (B1), 30% to Soft-Real-Time
(SRT) traffic corresponding to Buffer 2 (B2), 20% to Earliest Deadline First (EDF) traffic corresponding
to Buffer 3 (B3), and 15% to First-Come-First-Served (FCFS) traffic corresponding to Buffer 4 (B4). The
number of buffers per ToR varies between 8 and 16. The specific allocation of buffers to each service
class is detailed in Table 6, with the majority allocated to HRT traffic to minimize congestion and packet
loss.
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Performance Analysis

The network load was experimentally varied by establishing between 56 (50% load) and 112 (100%
load) communication links, and the blocking probability was calculated with and without buffer reuse.
Data was collected at 100 distinct timestamps for each measurement, and the results were averaged.
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Fig. 11 Snapshot of execution of program and wavelength assignment for ToR1

Fig. 11 provides a snapshot of the program execution and wavelength assignment for ToR1. At a
specific time instant depicted in Fig. 11, Block A shows that 98 connections were attempted, with 80
successfully established and 18 blocked due to insufficient buffer availability and wavelength allocation
conflicts, resulting in a blocking probability of 0.18367. Block B illustrates the wavelength allocation,
where the sequence [1,1,1,1,1,1,1,1,0,1,0,1,1,0,1,1] represents the assignment in port 7. Wavelengths w1
to wg, W10, W12, W13, W1s, and Wi are set to 1, indicating successful connection establishment between the
source and destination, while wavelengths we, w11, and w14 remain unused. Block C of Fig. 11 displays
the specific wavelengths utilized for successful communication.

Table 7 presents the relationship between blocking probability and network load. It was observed that
there is minimal variation in blocking probability when the network load increases from 0.4 (40%) to 0.5
(50%). However, a significant increase in blocking probability is noted as the network load rises from 0.8
(80%) to 0.99 (99%). Fig. 12 provides a graphical representation of this relationship. The results indicate
that implementing buffer reuse improves blocking probability by an additional 50%, which in turn reduces
network congestion, while also enhancing scalability.
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Table 7. Blocking probability with respect to network load with reused buffer

Blocking Probability in PODS | 1 5 041 | 0078 | 0.122 | 0.293 | 0282 | 0374
without re-used buffer

Blocking Probability in PODS
with re-used of buffer

0 0.03 0.06 |0.091 |0.1235]0.158 | 0.186

BLOCKING PROBABILITY vs NETWORK LOAD
Average packet latency 3 ps
== Blocking Probability in PODS == Blocking Probability in PODS with re-used of Buffer
0.4

BLOCKING PROBABILITY
(=]
N

NETWORK LOAD

Fig. 12 Blocking probability with respect to network load

To further validate the proposed model, blocking probability was assessed under varying network
loads by altering the number of buffers per ToR, as shown in Table 8 and Fig. 13. The results indicate that
blocking probability decreases as the number of buffers increases. Additionally, Table 8 reveals that the
optimal blocking probability is achieved with 14 buffers per ToR, beyond which the reduction in blocking
probability plateaus, likely due to wavelength unavailability.

Table 8. Blocking probability with respect to network load with different buffer size

8 0.170 (0.206 |0.243 |0.286 [0.333 |0.385 |0.418 (0.452 |0.482
NO OF|9 0.107 |0.138 |0.171 |0.221 |0.262 |0.316 |0.352 |0.390 |0.420
BUFFE |10 0.068 |0.087 |0.114 |0.162 |0.202 |0.253 |0.294 |0.326 |0.357
R 11 0.043 |0.060 |0.086 |0.125 |0.161 |0.201 |0.244 |0.271 |0.295
12 0.033 |0.048 |0.071 |0.104 |0.131 |0.165 |0.200 |0.224 |0.246
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13 0.030 |0.048 |(0.071 |0.091 |0.119 |0.143 |0.171 |0.189 |0.207
14 0.030 [0.048 |0.071 |0.091 |(0.113 |0.132 |0.153 (0.171 |0.188
15 0.030 (0.048 |0.071 |0.091 |(0.113 |0.126 |0.143 |(0.162 |0.179
16 0.030 [0.048 |0.071 |0.091 |(0.113 |0.126 |0.143 |(0.162 |0.179

NO. OF BUFFER vs BLOCKING PROBABILITY

0.5
NETWORK
\ LOAD IN % L
Z 04 o
= \\ - 56%
2 \ 63%
== 0.3 \\§ 69%
Q - °
& \\\k\ - 75%
% 02 \\\\\‘*——‘ = 81%
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Fig. 13 Blocking probability with buffer size for different network loads

While Tables 7 and 8 present the overall blocking probability of the entire architecture, Table 9
provides a detailed breakdown of the number of connections dropped within each service class.

Table 9. Number of blocked connections in different services

Number of block connections | 0 3 6 9
with re-used buffer

The results demonstrate that by employing path reconfiguration and buffer reuse, the blocking
probability for High-Real-Time (HRT) traffic is reduced to zero, while it increases progressively for
lower-priority traffic, reaching a maximum of 9.1% for FCFS traffic. This finding further confirms that
the proposed architecture is an effective solution for managing real-time mixed traffic in cloud-centric
applications.

7. Conclusion

This paper has presented an optical circuit-switched framework aimed at enhancing service
provisioning in data center networks through improved scalability, dynamic QoS adaptation, and reduced
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blocking probability. The proposed architecture effectively simplifies network complexity while
supporting cloud-centric, high-speed, and real-time data transmission across heterogeneous traffic
environments. By integrating reconfigurable optical switching with intelligent control mechanisms, the
design demonstrates a promising pathway toward efficient, scalable, and latency-optimized DCNs,
capable of meeting the stringent performance demands of modern cloud and data-intensive applications.
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