IJSAT

_T_ International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

Asynchronous processes and message queues in
Ruby applications: efficiency analysis of Sidekiq
and RabbitMQ

Anna Topalidi
Specialist degree, Moscow state university of geodesy and cartography, Moscow, Russia

Abstract

This article examines the role of asynchronous data processing in the architecture of modern Ruby
applications. Particular attention is given to the use of background jobs and message queues as tools for
offloading the main execution thread and improving server-side performance. The architecture of
asynchronous processes is studied with a focus on the integration of tools such as Sidekig and RabbitMQ
within the Ruby ecosystem. It analyzes the specifics of their use, implementation approaches, and the
principles of organizing queues and workers in the context of web applications. It explores the comparative
efficiency of Sidekiq and RabbitMQ in handling background tasks, considering their strengths and
weaknesses in terms of reliability, scalability, fault tolerance, and ease of operation.

Keywords: Ruby, Asynchronous processing, Background jobs, Message queues, Sidekig, RabbitMQ,
Performance

1. Introduction

Asynchronous data processing plays a pivotal role in ensuring the performance and scalability of modern
web applications. Within the Ruby ecosystem, the offloading of resource-intensive operations from the
main execution thread is commonly achieved through the use of message queues and background job
processors. This architectural approach reduces server load, improves user interface responsiveness, and
ensures reliable execution of tasks that do not require immediate completion. In practice, asynchronous
workflows are especially valuable when interacting with external APIs, sending notifications, generating
reports, and performing other operations involving latency or large data volumes.

Among the widely adopted tools for implementing asynchronous logic in Ruby applications are Sidekiq,
which leverages Redis, and RabbitMQ, a fully-featured message broker system. Despite fundamental
differences in architecture and intended use, both tools are actively employed for background processing.
The choice between them is often guided by considerations of reliability, flexibility, performance, and
ease of integration. A clear understanding of these differences is essential for effective application
architecture design. The goal of this research is to provide an overview and comparative analysis of
Sidekig and RabbitMQ in the context of implementing asynchronous processes in Ruby-based
applications.

IJSAT25049271 Volume 16, Issue 4, October-December 2025 1



https://www.ijsat.org/

@ International Journal on Science and Technology (IJSAT)

= E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

2. Main part. Architecture of asynchronous processing in Ruby applications: approaches and
tools

Amid increasing demands for scalability and fault tolerance in web applications, developers are
increasingly turning to architectural strategies that offload resource-intensive or time-consuming
operations from the main execution thread. Asynchronous data processing enables high interface
responsiveness while simultaneously serving a large number of clients. Within the Ruby ecosystem, this
approach has gained significant traction due to the availability of robust tools and libraries tailored to the
language's characteristics and frameworks, particularly Ruby on Rails.

Asynchronous architecture is commonly implemented using message queues and background workers that
execute tasks outside the primary HTTP request lifecycle [1]. A typical example involves a user
submitting a form, which triggers a background process to send a confirmation email. Performing this
action synchronously would delay the server’s response and hinder the user experience. By delegating
such tasks to a separate thread or process, the server can immediately complete the request while
offloading the additional workload to a dedicated handler. Performance differences between these two
processing models can be observed in a benchmark study [2], where response times were measured under
varying user loads in a .NET environment for illustrative purposes (fig. 1).

7000
6000
5000
4000
3000
2000
1000y

075 150 200
Bl Async Bl Sync

Figure 1: Median response time for synchronous and asynchronous processing under varying user load,
ms

In Ruby development, two architectural solutions have received significant recognition for the
effectiveness in handling asynchronous tasks: the Redis-queued process handling solution, Sidekiq, and
the end-to-end message broker, RabbitMQ, based on the AMQP protocol. While both tools provide for
postponed or distributed tasks, there are significant differences in message sending strategy, message
sending capabilities, scalability, and monitoring in handling tasks. The choice between them is largely
influenced by the architectural requirements of a given application, the presence of external services that
must be integrated, and overarching project priorities, ranging from ease of configuration to demands for
high availability and reliable message delivery.

Integration of asynchronous tools into Ruby applications is achieved through specialized libraries. Sidekiq
is closely integrated with Ruby on Rails, offering a simple syntax and native support for ActiveJob, which
makes it an accessible option for developers seeking minimal configuration overhead. In contrast,

IJSAT25049271 Volume 16, Issue 4, October-December 2025 2



https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

=4 E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

RabbitMQ typically requires more explicit setup and is often favored in highly distributed architectures,
microservice environments, or scenarios that involve complex message routing. Ruby developers can
interact with RabbitMQ through libraries such as Bunny or March Hare, though in comparison to Sidekiq,
incorporating RabbitMQ into Rails-based projects generally demands more deliberate architectural
planning [3].

It is important to note that asynchronous processing in Ruby is not limited to the use of message queues.
The language also provides low-level concurrency mechanisms such as threads and fibers [4]. However,
in the context of server-side applications built with frameworks like Rails or Sinatra, external queues and
background workers remain the most reliable and widely adopted approach. These solutions enable
consistent, repeatable, and scalable task execution independent of the web server, while minimizing the
impact of background operations on user-facing workflows.

Thus, the architecture of asynchronous processing in Ruby applications is fundamentally based on the
separation of execution flows between the main application and dedicated task handlers, as well as the use
of intermediary message delivery systems. Understanding the distinctions between the primary tools
available, their capabilities, and implementation specifics is a critical step toward the effective design and
maintenance of high-load systems.

3. Comparative analysis of Sidekig and RabbitMQ in the context of background task
optimization

Implementing background job processing requires selecting an appropriate tool that ensures reliable task
delivery and execution without overloading the main application. Sidekiq and RabbitMQ are two widely
adopted solutions within the Ruby ecosystem. Nevertheless, their architectural foundations, task-handling
models, and operational characteristics differ significantly. These differences lead to distinct scenarios for
optimal use and varying levels of effectiveness depending on the nature of the tasks being performed.
Sidekiq is designed as a lightweight, tightly integrated background processing system for Ruby on Rails
applications, leveraging Redis as its queue storage backend. Its primary strength lies in its high throughput
when handling large volumes of homogeneous tasks, all while requiring minimal configuration and
maintenance effort [5]. Utilizing an internal multi-threading mechanism, Sidekig can process numerous
jobs concurrently within a single process, making efficient use of system resources. Built-in support for
retries, delayed jobs, and a flexible monitoring interface via a web dashboard facilitates rapid adoption,
even in projects with modest architectural complexity. However, in distributed environments or in cases
where complex message routing is required, Sidekiq may present limitations in terms of flexibility.
RabbitMQ is a fully-featured message broker based on a broker-client model. It supporting various routing
patterns including direct, topic, and fanout exchanges. Comparing to Sidekiqg, RabbitMQ offers a higher
degree of control over message delivery paths, acknowledgement mechanisms, and fault tolerance. This
makes it particularly well-suited for microservice architectures, where precise coordination of task flows
across multiple components is essential (table 1).

Table 1: Comparison of Sidekiq and RabbitMQ [6, 7]

Characteristic Sidekiq RabbitMQ
Processing model Parallel threads within a process Message brokering via external broker
Storage / broker Redis RabbitMQ (AMQP)

IJSAT25049271 Volume 16, Issue 4, October-December 2025 3



https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

-
Retry support Yes (built-in with exponential | Yes (configurable policies)

backoff)
Message delivery reliability Limited (depends on Redis durability) | High (acknowledgements, durable queues)
Routing flexibility Limited Flexible (direct, topic, fanout, headers)
Delayed job support Yes (via set + wait) Yes (native, with TTL and delay plugins)
Monitoring and Ul Built-in web dashboard Via external tools (e.g., Management Plugin)
Rails integration Full (integrated with ActivelJob) Possible, but requires manual setup

The adoption of RabbitMQ typically involves more complex configuration and operational overhead,
including queue management, exchange setup, and retry policies, which may be excessive for smaller or
less complex projects. The performance of these two solutions also depends heavily on the nature of the
tasks being executed. Sidekiq tends to deliver superior results when processing short-lived, high-frequency
jobs such as sending emails, updating database records, or interacting with external API. However, it is
less equipped to ensure message durability in the event of system-wide failures, as Redis does not provide
persistent storage guarantees without additional configuration. RabbitMQ, by contrast, is designed to
support reliable message delivery through acknowledgement protocols and the option for long-term queue
persistence. This capability significantly reduces the risk of data loss, particularly in critical business
workflows where each task must be processed at least once.

Scalability is also achieved differently in the two systems. Sidekiq scales vertically by increasing the
number of threads within a process and horizontally by running multiple worker instances. However, the
use of Redis introduces a potential single point of failure, particularly in the absence of a properly
configured clustered environment. RabbitMQ, by contrast, enables scalability through broker clustering
and the addition of independent consumers. This approach provides greater flexibility in distributed
systems but comes at the cost of increased infrastructural complexity and operational expertise.
Reliability and fault tolerance likewise vary between the two tools. Sidekiq includes built-in retry
mechanisms with exponential backoff for failed jobs, yet the persistence of task data depends entirely on
Redis. Without a durable write configuration, Redis may lose data in the event of a failure [8]. RabbitMQ,
on the other hand, offers a more robust reliability model, it supports message acknowledgements, durable
queues, and recovery mechanisms that preserve state across restarts. These features make RabbitMQ quite
suitable for systems with strict requirements for data integrity and guaranteed delivery.

In summary, Sidekig and RabbitMQ are architecturally and functionally geared for different objectives.
Sidekiq shines in traditional, monolithic Ruby applications where the integration and timely execution of
scheduled tasks are the top priority. On the contrary, RabbitMQ would suit distributed systems where
guaranteed delivery, routability, and independently scalable parts are the need of the hour. Hence, the
selection of one of the two should solely depend on careful analysis of project-necessitated demands for
dependability, performance, architectural flexibility, and operational practicability.

4. Conclusion

Handling asynchronous tasks is one of the central pillars in the development of contemporary web
applications, enabling efficient distribution of the primary execution thread and responsiveness
optimization for user interactions. There are quite a variety of tools for asynchronous process handling in
the Ruby programming environment, with the two most widely used being Sidekiq and RabbitMQ.

IJSAT25049271 Volume 16, Issue 4, October-December 2025 4



https://www.ijsat.org/

IJSAT

_T_ International Journal on Science and Technology (IJSAT)

=4 E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

Although both tools are designed for asynchronous support, the inherently disparate design implemented
for message handling leads to diverse applications and pragmatic effects.

Sidekiq is designed particularly for ease of integration and throughput in monolithic applications, while
RabbitMQ offers advanced route management and scalability features-specifically, features of particular
focus in distributed system design. Therefore, the ultimate decision for the use of one tool or the other
should depend on the architectural setup of the application, the reliability requirement for message
sending, the business logic, and the budget for infrastructure upkeep.

References

1. Sidorov D., Kuznetcov 1., Dudak A. “Asynchronous programming for improving web application
performance”, ISJ Theoretical & Applied Science, 2024, 138 (10), 197-201.

2. Async vs Sync Benchmark (NET) / Medium // URL: https://medium.com/azlamps/async-vs-sync-
benchmark-net-f1e752a57755 (date of application: 12.09.2025).

3. Johansson L., Dossot D. “RabbitMQ Essentials: Build distributed and scalable applications with
message queuing using RabbitMQ”, Packt Publishing Ltd, 2020.

4. Ulanov A. “Utilizing Real Time Technologies in Ruby Web Applications”, Internafional Journal of
Computer Science and Mobile Compufing, 2022, 11 (12), 34-45.

5. Bakker L.E. “Update to the Statistical Output of a Cybersecurity Monitor”, Fermi National
Accelerator Laboratory (FNAL), Batavia, IL (United States), 2023.

6. Sangeetha E., Deny J. “Innovative Actuator Control in Smart Cities with the InterSCity Platform”,
In2023 7th International Conference on Electronics, Communication and Aerospace Technology
(ICECA), 2023, 342-350.

7. Catovi¢ A., Buzadija N., Lemes S. “Microservice development using RabbitMQ message broker”,
Science, engineering and technology, 2022, 2 (1), 30-7.

8. Sreekanti V., Wu C., Chhatrapati S., Gonzalez J.E., Hellerstein J.M., Faleiro J.M. “A fault-tolerance
shim for serverless computing”, InProceedings of the Fifteenth European Conference on Computer
Systems, 2020, 1-15.

IJSAT25049271 Volume 16, Issue 4, October-December 2025 5



https://www.ijsat.org/

