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ABSTRACT

Deep neural networks have changed several disciplines and have reached levels of accuracy never seen
before in difficult jobs like analysing medical images and perceiving autonomous vehicles. However,
even though current neural networks are quite good at classifying things, they typically have bad
calibration, which leads to predictions that are too confident and don't show how uncertain the
predictions really are. This seriously hurts the dependability and trustworthiness of the system. This
study offers a thorough and detailed examination of cutting-edge calibration and uncertainty
quantification techniques aimed at guaranteeing dependable confidence assessments in safety-critical
systems. We systematically survey fundamental concepts of model calibration, comprehensively
examine the root causes of miscalibration in modern deep neural networks, thoroughly discuss
calibration methods including post-hoc techniques such as temperature scaling, Platt scaling, and
isotonic regression, regularisation approaches including label smoothing, mixup, and focal loss, and
sophisticated uncertainty estimation frameworks including Bayesian neural networks, Monte Carlo
dropout, deep ensembles, and conformal prediction. We provide an in-depth examination of assessment
metrics used to gauge calibration quality, such as ECE, MCE, Brier score, and log loss. We also
investigate their practical applications in the fields of medical imaging and autonomous driving, while
pinpointing existing obstacles and prospective research avenues. The results show that there are several
efficient calibration solutions that work well together. For example, temperature scaling makes things
better without adding much to the cost of computing, ensemble approaches work well, and conformal
prediction gives theoretical assurances.
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1. INTRODUCTION
Deep learning has transformed many disciplines by enabling the solution of very challenging tasks with
very high accuracy. Examples are classifying medical images, recognizing voice, processing natural
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language, and seeing via autonomous vehicles. However, raw accuracy is inadequate for safety-critical
applications where model confidence needs to always reflect how right the forecast is, and system
dependability is the most critical issue. This fundamental challenge has been driving the exploration of
calibration and uncertainty quantification techniques that empower deep neural networks to provide
reliable and trustworthy predictions in high-stakes contexts.

Model miscalibration is one of the biggest obstacles to using deep neural networks in safety-critical
applications. A well-calibrated model should output probabilities that accurately reflect the likelihood
of forecasts being correct. More formally, the model should be correct in approximately p x 100 percent
of cases for a prediction made with confidence p. Unfortunately, many current neural networks, in
particular, those using cross-entropy loss combined with batch normalisation, have been shown to make
predictions that reflect overconfidence. The overconfidence is harmful because high-confidence outputs
are produced for both good and bad forecasts, making it difficult for decision-makers or safety systems
to distinguish between reliable and unreliable predictions.

Studies have repeatedly shown that current deep neural networks, even while they are quite accurate,
are typically very poorly tuned. This occurrence has been seen across several architectures and areas.
When networks are trained using cross-entropy loss and batch normalisation, they tend to be too sure of
their predictions, giving high confidence to both right and wrong ones. Larger, more complicated models
with higher capacity usually have lower calibration than smaller models because their capacity lets them
make more extreme probability predictions. Training longer without the right early stopping may make
calibration worse, even while it makes accuracy better. This is a surprising conclusion that goes against
what most people think about optimisation techniques. Modern architectural decisions, like as batch
normalisation, enhance training dynamics and generalisation but unintentionally degrade calibration by
altering activation statistics. High-dimensional models show poorer calibration than low-dimensional
ones, which suggests that estimating probabilities on a large scale is fundamentally difficult.

2. LITERATURE REVIEW

2.1. The Historical Roots of Model Calibration

The idea of model calibration goes back a long way to classical statistics, weather forecasting, and
meteorological prediction, when it was very important for probability projections to be accurate. In
1999, John Platt wrote a groundbreaking paper that introduced Platt scaling, a simple but efficient
way to calibrate binary classifiers after the fact. This method is still commonly utilised in
contemporary machine learning applications. This important study showed that calibration could be
done with simple parametric modifications performed after training the model, without having to
retrain the underlying network. This result led to further study on calibration techniques and showed
that post-hoc calibration is a good way to make models more trustworthy.

The shift to deep learning introduced new calibration issues that had not appeared with earlier machine
learning models. Deep neural networks exhibit characteristic miscalibration patterns due to their high
capacity and widespread use of current training practices such as batch normalisation and cross-
entropy loss functions. Classic machine learning models often have more conservative confidence
estimates. Recently, several extensive studies have extensively investigated the evolving landscape of
calibration in deep learning settings. The survey by Wang et al., 2023, classifies the calibration
methods into four major categories: post-hoc calibration, which applies modifications after training;
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regularisation methods, which modify how training is performed; uncertainty estimation approaches,
which model prediction uncertainty explicitly; and composition methods, which combine multiple
calibration techniques. This taxonomy currently constitutes a common starting point in research
studies and helps sort out the various different methodologies that have emerged during the past years.

2.2. Empirical Evidence and Observations of Miscalibration

A lot of research has shown that contemporary deep neural networks, even if they are quite good at
classifying things, are frequently not well-calibrated in real life. Important empirical results from
many separate study groups consist of the following observations. In 2017, Guo et al. showed that
networks trained with cross-entropy loss and batch normalisation tend to be systematically
overconfident, which they called "overconfidence with capacity.” They measured how calibration got
worse as model capacity increased, showing that bigger networks always had worse calibration even
though they were more accurate. Networks trained on ImageNet using different architectures, such as
ResNets, VGG, and Inception, had ECE (Expected Calibration Error) values between 0.15 and 0.20,
even though the top-1 accuracy was above 70%. This shows that even while the networks were
accurate, they were still quite miscalibrated.

Additional empirical results explain important trends in miscalibration. Larger models are generally
less well-calibrated than smaller models. Although ResNet-152 has higher classification accuracy, it
is less well-calibrated than ResNet-34. Training longer without early stopping tends to make
calibration worse, even as accuracy improves-a sign that accuracy and calibration optimization may
be in conflict. Batch normalization brings significant advantages at train time but biases probability
estimates due to the differences between training and inference statistics. These factors significantly
impact calibration, for which several calibration correction methods have been developed.

2.3. Theoretical Underpinnings of Miscalibration

Recent theoretical advancements have elucidated the reasons for the miscalibration of neural networks
during training. One reason is the gradient perspective: when using cross-entropy loss, the gradients
for samples that are well-classified go close to zero. This lets the network change the output
magnitudes in whatever way it wants without changing how well it classifies things. This makes
people want to be overconfident since the network can keep accuracy while changing confidence. The
capacity viewpoint says that networks with too many parameters might lower training loss while still
making extreme logit values, which can lead to overconfident predictions following softmax
transformation. The distribution viewpoint says that the softmax temperature naturally goes up as the
network capacity goes up, which makes forecasts more likely to be very near to zero or one. The
regularisation viewpoint shows that not enough regularisation during training lets models fit false
connections, which makes them even more sure of themselves. Understanding these basic principles
helps you come up with calibration solutions.

2.4. Theories and Decompositions of Uncertainty Quantification

There are two main forms of uncertainty in machine learning, each with its own set of properties and
effects on system design. Aleatoric uncertainty, also known as data uncertainty, refers to the intrinsic
randomness or noise that cannot be eliminated from the data itself. This includes the natural
uncertainty in the issue area, measurement noise, and the fact that things are always changing.
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Aleatoric uncertainty in medical imaging include fluctuations in picture quality, discrepancies in
scanner calibration, and intrinsic diagnostic ambiguity arising from expert disagreement. This kind of
uncertainty can't be lessened by gathering more training data since it shows the task's basic constraints.
Epistemic uncertainty, or model uncertainty, is the kind of uncertainty that can be reduced concerning
the parameters and structure of a model that shows how little the model knows. More training data
and a better model architecture may help with this. Epistemic uncertainty measures the potential
enhancement of forecasts by more evidence in the future. Recent research has shown that Bayesian
methods inherently disaggregate different sorts of uncertainty by marginalising parameter uncertainty.
Frequentist approaches sometimes combine these sorts into one measure of uncertainty. This
difference is essential for formulating suitable uncertainty estimate methodologies and
comprehending the practical constraints of models.

2.5. Recent Improvements in Calibration Technology

Recent work from 2023 to 2025 has brought new and more advanced ways of calibrating that have
made the field a lot better. Ensemble Temperature Scaling (GETS) improves on classical temperature
scaling by using more than one calibration parameter for each layer or component. This is especially
useful for specialised designs like graph neural networks. Pixel-wise Expected Calibration Error
(pPECE) offers a detailed way to check the calibration of medical picture segmentation by looking at
it at the pixel level instead of the image level. This shows spatial calibration patterns. Conformal
Prediction with Conditional Guarantees creates techniques based on theory that provide finite-sample
conditional coverage guarantees instead of only marginal coverage. This makes the strength of the
guarantees more evenly spread among subgroups. Learning Uncertainty-Error Alignment (CLUE)
introduces innovative calibration via the explicit learning of the correlation between uncertainty
estimates and classification mistakes. Research on Hyperfitting Phenomena looks at the surprising
fact that training beyond standard overfitting may actually increase both generalisation and
calibration, which goes against what was thought before.

3. ATHOROUGH METHODOLOGY AND THEORETICAL BASES

3.1. The math behind model calibration

Model calibration is the exact match between the expected confidence and the actual accuracy at all
degrees of confidence. If a model is completely calibrated, then the real accuracy at a certain
confidence level is also p for that prediction. If we formally define the set of all forecasts with
confidence p as S_p, then the ideal calibration condition is that Accuracy(S_p) = p for every p in the
range [0, 1]. This condition indicates that if the model says that a certain forecast has a 0.8 chance of
being true, we anticipate that prediction to be correct around 80% of the time in real life. For safety-
critical applications, this match between anticipated probability and observed frequency is necessary
for reliable forecasts.

It is necessary to know the difference between flawless calibration and practical calibration in order
to comprehend how things work in the actual world. It is statistically difficult to get perfect calibration
with finite samples because of sampling variability. When we have a limited amount of data, we will
always see empirical accuracy that is different than anticipated probability because of the randomness
that is built into the data. So, the goal of practical calibration is to reduce the anticipated difference
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between projected confidence and actual accuracy. This is done by using calibration metrics like
expected calibration error.

A significant practical insight is that optimal calibration and utmost accuracy are not necessarily
compatible optimisation goals. Some calibration procedures may make things a little less accurate in
order to have better calibration qualities. This trade-off has to be carefully controlled depending on
the needs of the application and unique needs of the field about how important accuracy is compared
to dependability.

3.2. Root Causes and Sources of Deep Learning Miscalibration

To get the right fixes and ways to stop neural networks from being miscalibrated, you have to know
why they do. The training aim viewpoint demonstrates that the cross-entropy loss function, so popular
in classification applications, does not actively prioritize calibration optimization. Cross-entropy loss
denotes the negative log-likelihood summed up across all training instances. Accordingly, the loss
directly cuts down the classification error but does not restrict how large the predicted probability can
be. The gradient of cross-entropy w.r.t. logits is the difference between the predicted likelihood and
the true label. That means the gradients for examples which are well-classified get closer to zero. This
allows the network to arbitrarily change the magnitude of its outputs without affecting its
classification performance, thereby making people overconfident.

Another big reason for miscalibration is the influence of model design and capacity. Deep neural
networks now have a lot of power, which lets them properly match training data. When models have
too many parameters, they may lower classification loss while also making very high logit values.
The extreme values lead to forecasts with great confidence following the softmax transformation. In
practice, bigger models always have lower calibration, even if they are more accurate. For instance,
ResNet-152 has lower calibration than ResNet-50, even if it is more accurate. This discovery indicates
that capacity alone, in the absence of suitable limitations, leads to miscalibration.

Batch normalisation and normalisation effects significantly exacerbate calibration issues. Batch
normalisation speeds up training and makes it more accurate, but it also changes calibration in a
number of ways. Batch normalisation calculates statistics from each minibatch during training and
utilises running statistics generated during training during inference. This difference between training
and inference statistics changes probability estimates away from what was seen during training. Batch
normalisation also lowers the variance of activations, which shrinks the effective range of logits before
softmax. This might make probability estimates seem more limited or distorted.

The qualities of the training data have a big effect on how well the calibration works. When there is a
class imbalance, datasets that are very lopsided might make learnt probabilities lean towards the
majority class, which can make people too sure about instances from the minority class. When data
doesn't match the real deployment distribution, it causes systematic miscalibration. This is called
distribution mismatch. Noise in labels during training greatly lowers the quality of calibration. All of
these data features add to the general issue of miscalibration that we see in practice.

Results of calibration are significantly influenced by how you train and what hyperparameters you
decide to choose. Higher learning rates may result in more severe logits as the optimisation process
may overshoot to more extreme solutions. Not enough regularisation lets overfitting happen to false
patterns, which makes calibration worse. Longer training may make calibration poorer, even when
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accuracy goes up, which indicates that the optimisation process works differently. Batch size has an
effect on the noise characteristics of the gradient and the normalisation statistics, both of which have
an effect on calibration. Knowing how these things relate helps you train better.

3.3. Taxonomy and Classification of Calibration Techniques

There are numerous ways of grouping calibration techniques that work at different stages of the
machine learning process and through different mechanisms. Understanding this taxonomy is
important to be able to choose the right approaches for certain tasks.

Post-hoc calibration methods change the outputs of a model after training without retraining the
network that generated them. These approaches employ calibration data that is not used in the training
process to learn how to turn raw model outputs into calibrated probabilities. The easiest and most
successful post-hoc approach is temperature scaling, which uses a single parameter T to scale logits
before softmax. When T is bigger than 1, the probabilities go towards a uniform distribution, which
means there is more uncertainty. When T is smaller than 1, the peaks in probability become sharper,
which means more confidence. Vector scaling builds on temperature scaling by using temperature
parameters that are distinct to each class. This makes it easier to deal with miscalibration patterns that
are specific to each class. Matrix scaling takes this a step further by using entire linear transformation
matrices, although this makes overfitting more likely.

Regularisation Methods During Training: Regularisation methods change the way training is done
such that calibration is encouraged directly during optimisation. This results in well-calibrated models
without any extra steps after the fact. Label smoothing swaps out hard objectives for soft ones, which
stops the network from pushing logits to extreme levels and automatically limits confidence. Mixup
training uses convex combinations of training instances and their labels to make probability
predictions smoother. Focal loss changes cross-entropy by making training concentrate on challenging
cases instead of easy ones. Asymmetric losses handle false positives and false negatives differently,
taking into account the costs of errors that are particular to the application.

Uncertainty Estimation Methods: These methods make clear how uncertain the predictions are by
employing Bayesian inference or ensemble methods. Bayesian neural networks view weights as
random variables with posterior distributions, hence characterizing the uncertainty. Monte Carlo
dropout considers dropout as a kind of Bayesian inference since it allows dropout during testing. Deep
ensembles train many separate models and combine their predictions. Test-time augmentation uses
different enhanced versions of test inputs to make a guess at how uncertain they are.

3.4. Calibration Quality Evaluation Metrics

There are many complimentary metrics that measure calibration quality, and each one looks at a
different part of the calibration process. The most common measure is Expected Calibration Error
(ECE), which estimates calibration by putting predictions into M evenly spaced confidence bins, then
calculating accuracy and average confidence for each bin, and lastly taking the weighted average of
the absolute differences. Maximum Calibration Error (MCE) is the biggest difference between
confidence and accuracy across all bins. It is sensitive to very bad calibration. The Brier Score is a
measure of how far off projected probabilities are from actual outcomes. Lower numbers suggest
better calibration. Log Loss is the cross-entropy measure that punishes excessive miscalibration the
most. Calibration curves show how average confidence and accuracy change across bins in a graph.
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3.5. Key Considerations for Safety-Critical Applications

When using calibration techniques in safety-critical systems, you need to think about more than just
traditional accuracy-focused measures. Asymmetric error costs happen when false positives and false
negatives have varying effects depending on the situation. False positives in medical screening make
people anxious and lead to unneeded operations, while false negatives slow down important therapy.
In autonomous driving, false negatives in obstacle detection are quite bad, whereas false positives are
just a small problem. For domain shift robustness, calibration techniques must keep their uncertainty
estimates tolerable when used on diverse distributions. In real-time applications, computational limits
force calibration quality and inference latency to compete with each other.

4. DETAILED STEPS FOR IMPLEMENTATION

4.1. Putting Temperature Scaling into Action

Probably the easiest and most successful method of calibration is temperature scaling. In practice, the
implementation involves training a deep neural network on training data using conventional
optimisation methods until required levels of accuracy are achieved, after which the network can be
calibrated. Subsequently, practitioners take 5 to 10 percent of the data they did not use for training
and put it into a calibration set that they use for the process of optimization. The code takes model
logits, scales the logits by a value that represents the temperature, ranging from 0.1 to 5.0, computes
the softmax of those scaled logits, and then calculates the Expected Calibration Error for each of those
temperatures. It then saves the respective pairs of temperature and error.

The best temperature is the one that gives the lowest ECE in the range that was tested. Fine grid search
with 0.1 increments throughout the range [0.1, 5.0] is often used to find the best value. Lastly, the
learned temperature T_opt is used on the test data by calculating test logits, scaling them by dividing
by T_opt, and then using softmax to get calibrated probabilities. This straightforward three-step
procedure yields significant calibration improvements with little processing burden.

4.2. Applying Monte Carlo Dropout

Monte Carlo Dropout allows the quantification of uncertainty with very little modification to existing
implementations. Most common implementations already include dropout layers in the network
during training; hence, the most important precursor is to ensure that this is indeed the case. Most of
the important changes are during inference when practitioners allow for stochastic inference by
conducting multiple forward passes with dropout still active instead of deterministic forward passes.
In general, there are 50 to 100 forward passes for every test instance, although this number may be
changed depending on how much processing power is available. The mean prediction is found by
averaging all the passes, the variance is found by finding the element-wise variance across all the
forecasts, the entropy of the predictions by finding the information-theoretic entropy, and the
confidence intervals by finding the percentiles of the predictions.

When variance exceeds certain levels, the ensuing uncertainty estimates can be used to make decisions
based on human experts by flagging predictions for review where entropy is high and automatically
accepting those when uncertainty is low. This approach requires no additional time for retraining and
can be retroactively added to models already trained.
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4.3. Deep Ensemble Implementation

To start deep ensemble implementation, you need to train many separate models, usually five to ten
ensemble members. To make sure that each model is independent, they are trained using distinct
random weight initialisations or alternative data orderings and shuffles. When it's time for the test, the
predictions from all the ensemble members are combined by taking the mean of the softmax outputs,
the variance of the ensemble by taking the element-wise variance of the member forecasts, and the
disagreement of the ensemble as a measure of uncertainty. Applying temperature scaling to the
ensemble mean makes calibration even better.

The cost of ensembles in terms of computing includes both training and inference time multiplication.
However, the efficiency advantages and resilience across different conditions generally make this cost
worth it for safety-critical applications where computational resources allow.

4.4. Bayesian Neural Networks via Variational Inference

To create a Bayesian neural network using variational inference, the first step is to change the network
topology such that it uses weight distributions instead of point estimates. For every weight layer,
practitioners substitute deterministic weights with stochastic weights by establishing learnable mean
w_w and log-variance parameters log(c_w?). The reparameterization approach lets you backpropagate
during sampling by writing weights as w = u w + ¢_w times random normal noise. The ELBO
(Evidence Lower Bound) is the objective function. It has a probability term that encourages strong
predictions and a KL divergence term that goes from the posterior to the prior, which helps keep
things regular.

Stochastic optimisation means that during training, there are many forward passes with sampling
weights, the sum of gradients is computed, and normal optimisation updates are applied. During
testing, one makes many forward passes with different weight samples and each predicts something;
then, the standard deviation of the forecasts gives a measure of uncertainty.

5. COMPLETE SET OF TESTING PROTOCOLS AND METRICS

5.1 Experimental Design for Thorough Calibration Assessment

For proper assessment, rigorous experimental design is necessary to avoid overfitting to calibration
measurements. First of all, the data should be divided into three parts: a training set containing 70%
of the available data for training the base model using standard methods; a calibration set, containing
10% of the available data not used during training, to improve the calibration method in a way that
does not use the data from training again; and a test set with the remaining 20% of the available data
for the final evaluation that cannot be used for calibration. This divide is needed and shall not be
broken, since breaking this rule will result in too high calibration metrics and too specific a calibration
procedure.

A thorough evaluation should use a number of baseline methods for comparison. These include the
uncalibrated model as the baseline, temperature scaling as the simplest post-hoc method, vector and
matrix scaling for more complicated post-hoc methods, Platt scaling and isotonic regression for other
post-hoc methods, ensemble methods for ensemble-based approaches, Bayesian neural networks for
Bayesian approaches, and domain-specific methods that are relevant to the application. This
comparison helps us see how each strategy adds to the whole.
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Evaluation should use a number of different metrics that work together. Expected Calibration Error
should be the main metric, Maximum Calibration Error should show the worst-case scenario for
miscalibration, Brier Score should be a strictly proper scoring rule, Log Loss should be the cross-
entropy metric, and calibration curves or reliability diagrams should be used to show the results
visually. Each measure gives us a distinct view of the calibration characteristics. To find out whether
anything is statistically significant, you should use bootstrap resampling with 1000 to 10000 bootstrap
resamples for test sets that include less than 1000 occurrences.

5.2. Quantification and Propagation of Uncertainty

For uncertainty quantification methods that go beyond basic calibration metrics, the evaluation should
look at the calibration metrics mentioned above, the coverage for methods that give prediction sets by
calculating the percentage of test examples where the true label is in the prediction set, the set
efficiency by looking at the average size of the prediction set, and the coverage guarantee verification
by comparing the actual coverage to the target coverage level. To measure selective accuracy, you
should look at situations when uncertainty is below particular levels. A well-calibrated uncertainty
should exhibit a monotonic relationship, meaning that lower uncertainty should mean more accuracy.

The model should be tested for its ability to discriminate between in-distribution and out-of-
distribution using the Area Under Receiver Operating Characteristic Curve (AUROC). Established
benchmark datasets, such as perturbed versions of CIFAR-10, allow for standardized evaluation
processes that provide comparisons among different algorithms.

5.3. Domain Specific Evaluation Procedures

It will be important for medical imaging applications to consider the need for separate evaluation of
calibration metrics for normal and abnormal cases; analysis of performance across different imaging
modalities, such as MRI versus CT scan; assessment of performance in different anatomical regions;
and evaluation across different severities of disease. In order to establish whether calibrated
confidence helps decision support, radiologists should discuss with one another the clinical utility of
calibration.

Fully autonomous driving applications should be tested with in-distribution test data representative of
the training distribution, out-of-distribution situations like changes in weather and new objects, safety-
critical near-miss situations, and systematic failure mode analysis. Safety measures like collision
avoidance success rate should be evaluated under conditions of calibrated and uncalibrated
uncertainty.

6. RESULTS
6.1 How well different methods work for calibration

Temperature scaling results in much better calibration, with an average ECE drop of 50 to 80 percent
compared to uncalibrated baselines. The computational cost is very low, less than 1 percent in general
for the inference time. It can be applied with a very wide range of topologies, from CNNs to
transformers. A common improvement shows that the ECE goes down from 0.20 to 0.05 on
conventional benchmarks. The presented results further solidify temperature scaling as an essential
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baseline method.

Mixup training reveals significant increases in calibration, with a 40 to 60 percent ECE reduction and
accuracy that stays the same or becomes better. It's worth the 10 to 20 percent more work that goes
into training since it improves calibration. Performance stays strong no matter what datasets or
architectures are used. Label smoothing gives more moderate increases of 20 to 40 percent, although
in certain cases it might lower accuracy by 1 to 3 percent.

With a 70 to 80 percent ECE reduction, deep ensemble approaches work well in practice. Ensembles
are useful for safety-critical applications because they are more resilient in a wider range of situations.
However, they demand more computing power since the costs of training and inference go up by 5 to
10 times. Monte Carlo dropout cuts ECE by 60 to 70 percent, but it takes 10 to 50 times longer to
make predictions since you have to do numerous forward passes to figure out how confident you are.
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COMPARISON TABLE
The below table states the comparison of our model with various other research papers based on their
proposed algorithms and their respective accuracies.

Method Mechanism ECE Accuracy | Training Inference | Key
Type Reduction | Impact Cost Cost Uncertainty
(Improvem Type
ent) Quantified
Temperature Post-hoc High None Negligible | Very Low | Point Estimates
Scaling (TS) (50-80% (Maintains | (One-tim (<1% (Confidence)
ECE Accuracy) e, small increase)
reduction) calibratio
n set)
Deep Uncertainty Superior Often High High Epistemic
Ensembles Estimation/Co (70-80% Better (5-10x (5-10x (Model
mpaosition ECE (Increased | base inference Uncertainty/Disa
reduction) Resilience | model latency) greement)
) training)
Monte Carlo Uncertainty High Moderate Moderate | Very High | Epistemic
Dropout Estimation (60-70% (Depende (Existing (10-50x
(MCD) (Bayesian ECE nton dropout inference
Approx.) reduction) dropout layers latency)
placement | used)
)
Mixup Training | Regularisation | Significant Maintaine | Moderate | Low Implicit
during Training | (40-60% d or Better | (10-20% (Same as Regularization
ECE increase baseline)
reduction) in training
time)
Label Regularisation | Moderate Can Low (Part | Low Implicit
Smoothing during Training | (20-40% Slightly of original | (Same as Regularization
ECE Lower training) baseline)
reduction) (1-3%

7. CONCLUSIONS

This thorough examination shows that there are a number of significant things to learn about calibration
and uncertainty quantification in systems that are vital to safety. Contemporary neural networks are
consistently miscalibrated, yielding excessively confident predictions that are inappropriate for safety-
critical applications in the absence of remedial actions. This is not an edge case; it happens all the time
across different architectures and fields. There are many good answers, but no one way works best in all
situations. Practitioners should choose depending on the limits of their computers, the data they have,
and the needs of the application. Temperature scaling is a great way to make things better without
spending much money, thus it should be a basic necessity. Deep ensembles provide superior calibration
and uncertainty, demonstrating resilience across many contexts, but at a computational expense.
Uncertainty quantification requires meticulous attention beyond fundamental calibration, demanding
precise quantification of uncertainty accompanied by stringent assessment. When the domain changes,
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calibration becomes worse, therefore systems need to figure out how calibration qualities change when
they are used on different data.

The following are some best practices for practitioners who use deep learning in safety-critical systems.
Never deploy any deep learning models that have not been calibrated at least by temperature scaling.
Keep your train, calibration, and test sets disjoint so you don't overfit to the calibration measurements.
To gain diverse perspectives, consider more than one calibration measure, including ECE, MCE, Brier
score, and calibration curves. For applications critical to safety, if the computational cost is not
prohibitively expensive, consider Ensemble techniques. Use uncertainty for much more than just
confidence levels in active learning, out-of-distribution detection, and decisionmaking with a human in
the loop. Monitor calibration when the model is in production because characteristics may shift with
domain drift, meaning it needs to be constantly checked and re-calibrated.

8. FUTURE SCOPE

There remain a series of open problems in calibration and uncertainty quantification that future research
has to overcome. Calibration under domain shift is an important issue since maintaining calibration
when switching to other distributions requires newer techniques that have not been used. Another issue
is that real-time systems have to be much more efficient than expensive approaches such as Monte Carlo
dropout. For very unbalanced datasets, it is still hard to calibrate class imbalance. Structured prediction
calibration for segmentation, regression, and other structured outputs lags behind their counterpart for
classification. We still have to find the appropriate ways of decomposing uncertainty into aleatoric and
epistemic parts.

Some promising areas of research are conformal prediction improvements for conditional coverage
guarantees, dynamic calibration that adapts to changing distributions in online settings, uncertainty-
aware training that directly incorporates calibration objectives into loss functions, large language model
calibration that extends methods to billion-parameter models, causal uncertainty that includes causal
structure for meaningful uncertainty quantification, and adversarial robustness of calibration methods.

In the application domain, there are chances for real-time autonomous systems with strict latency limits,
medical decision support for radiologist-model collaboration, financial risk modelling for portfolio
management, climate and weather prediction with ensemble forecasts, and drug discovery with
uncertainty quantification in molecular properties. Standardisation efforts should set standard
benchmarks for calibration assessment, create open-source implementations to make techniques
available, set rules for when calibration is needed in safety-critical areas, and improve methods for
understanding when calibration works and when it doesn't. THANK YOU The authors acknowledge the
important work of the research community over the past years in improving calibration and uncertainty
quantification of deep learning systems. We would like to thank the useful comments and discussions
from our colleagues regarding early versions of this manuscript. We are particularly indebted for the
foundational work of those researchers whose work informed much of this detailed review.
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