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Abstract

The sixth generation (6G) of wireless networks envisions intelligent, ultra-reliable, and self-optimizing
systems capable of delivering terabit-per-second throughput, sub-millisecond latency, and pervasive
machine intelligence. Integrating Artificial Intelligence (Al) into Cognitive Radio (CR) architectures is a
fundamental step toward this goal. This paper presents a Python-based implementation and performance
analysis of Al-driven cognitive communication systems for 6G. The proposed model employs supervised
learning for spectrum sensing and reinforcement learning for dynamic channel allocation. Analytical and
simulation results demonstrate a 95 % detection accuracy at 5 dB SNR, a 35 % reduction in latency, and
a 22 % improvement in throughput compared to conventional CR. Additional investigations explore
scalability, energy efficiency, and potential deployment scenarios across smart infrastructures.

The results establish Al as a core catalyst for the 6G evolution.

Index Terms—
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I. INTRODUCTION

Wireless communication is entering an era where intelligence is as crucial as connectivity. The explosive
growth of loT devices, augmented-reality interfaces, and autonomous systems creates unprecedented
demands for capacity and adaptability [1]. While fifth-generation (5G) networks achieved gigabit-level
data rates, sixth-generation (6G) systems are expected to deliver terabit speeds, sub-millisecond latency,
and context-aware learning [2].

Traditional communication networks are static and pre-configured. In contrast, 6G aims to self-organize
spectrum usage and optimize resources autonomously. Cognitive Radio (CR) technology provides
dynamic spectrum access, but its performance depends on the intelligence embedded in the system.
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Artificial Intelligence (Al) empowers CR by allowing it to perceive, learn, and act based on environmental
feedback [3].

This research paper develops a Python-based cognitive communication model that uses Al techniques to
predict spectrum occupancy, decide optimal channels, and dynamically manage bandwidth. By integrating
machine learning with reinforcement learning, the system adapts to environmental variations while
maximizing performance.

I1. BACKGROUND AND RELATED WORK

A. Cognitive Communication Overview

Cognitive communication enables unlicensed users to opportunistically access underutilized licensed
spectrum bands. The primary functions include spectrum sensing, decision-making, sharing, and mobility.
These operations allow Secondary Users (SUs) to transmit data without interfering with Primary Users
(PUs).

B. Al in Next-Generation Networks

Al algorithms such as Deep Neural Networks (DNNSs), Support Vector Machines (SVMs), and
Reinforcement Learning (RL) have transformed the design of adaptive wireless systems [4]. In 6G, Al
facilitates autonomous network orchestration, channel prediction, and interference mitigation.

C. Review of Existing Work

Yucek and Arslan [5] provided the foundation of spectrum sensing techniques, emphasizing energy and
feature-based detection. Akyildiz et al. [6] explored dynamic spectrum access mechanisms. More recently,
Chenetal. [7] and Singh & Sharma [8] demonstrated Al-based optimization models achieving substantial
improvements in detection and latency.

Despite progress, existing works often lack open-source Python frameworks that merge theory,
mathematical analysis, and simulation results. This paper fills that gap by implementing and analyzing an
integrated Al-driven cognitive communication framework using Python libraries.

I11. PROPOSED METHODOLOGY

A. System Architecture

The system architecture is composed of four modules: Spectrum Sensing, Spectrum Decision,
Spectrum Sharing, and Spectrum Mobility. Each module operates sequentially to ensure intelligent
communication decisions.
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Fig. 1. Proposed System Architecture (placeholder)

The framework uses Scikit-learn and TensorFlow for modeling and Matplotlib for visualization. Synthetic
datasets emulate multiple SNR levels and channel states to represent realistic wireless environments.

B. Spectrum Sensing

In the sensing phase, the system identifies idle frequency bands using supervised learning. Features such
as Received Signal Strength Indicator (RSSI), energy variance, and noise level are fed into machine-
learning classifiers (SVM and Random Forest). The models are trained on 10 000 synthetic samples and
achieve 92 % average accuracy under moderate noise conditions.

e Spectrum Sensing: Al classifiers predict spectrum availability based on SNR measurements.

C. Spectrum Decision via Reinforcement Learning

An RL agent applies the Q-learning algorithm to determine the optimal transmission channel. The update
rule is defined as:

Q(s,2)=Q(s,a)tafr+yamaxQ(s',a")~Q(s,a)]

where s and a denote state and action, o is the learning rate, and vy is the discount factor. The reward function
combines throughput and interference cost, guiding the agent toward efficient channel utilization.

e Spectrum Decision: Reinforcement learning selects optimal channels to minimize collisions.

D. Spectrum Sharing and Mobility

Multiple secondary users share the available spectrum while maintaining fairness. When a PU reclaims a
band, SUs execute a rapid spectrum handoff to maintain connectivity.

e Spectrum Sharing: Multiple secondary users (SUs) access idle channels fairly.

e Spectrum Mobility: Users switch channels dynamically when primary users (PUs) return.
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E. Mathematical Model

Detection probability PdP_dPd is expressed as: P_d = P(Decision=H_1 |H_1) (1)

where Hi represents the hypothesis of primary user presence.
The false alarm probability is:
P_fa=P(Decision=H_1|H_0) (2)

Throughput for N users over bandwidth B is modeled as:
T=Y (i=1)"NR_iB (3)

where R; is the data rate allocated to the it user.

Throughput T and latency L are calculated as:

T=i=1YNRiB,L=NPproc+Pqueue+Ptransmit

F. Energy Efficiency Model

Energy efficiency Eeff measures the trade-off between throughput and power:

E eff=P total / T

G. Reward Convergence

The RL reward convergence follows:

R t=r t+yr {t+t1} +y" 21 {t+2} + ...

Convergence speed improves when reward variance is minimized through adaptive exploration.

Table I. Simulation Parameters (placeholder)

Parameter Symbol Value
Bandwidth B 100 MHz
Users N 50

SNR Range - -10dB -20dB
Learning Rate o 0.1

Discount Factor Y 0.9
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IV. RESULT AND ANALYSIS

A. Detection Accuracy vs SNR

Detection accuracy improves with SNR. At 5 dB SNR, accuracy reaches 95%, confirming the reliability
of Al-based detection [3], [7].
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Fig. 1. Detection Accuracy vs SNR

B. Latency vs Number of Users

Latency rises with increasing user load. Al-driven scheduling reduces latency compared to conventional
static methods [5], [8].
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Fig. 2. Latency vs Number of Users (Placeholder for graph)
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C. Throughput vs Bandwidth

Throughput scales almost linearly with bandwidth but saturates beyond 60 MHz due to interference
constraints, validating the theoretical model [6], [9].

Fig. 1 Throughput ve, Bandws ikt
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Fig. 3. Throughput vs Bandwidth

D. Comparative Performance

Table Il. Comparative Analysis (placeholder)

Metric Traditiona | Al- Improvement
ICR Driven
CR
Detectio | 77 % 91% +18 %
n
Accurac
y
Latency |68 44 -35%
(ms)
Through | 38 46.5 +22%
put
(Mbps)

V. DISCUSSION

Al integration offers consistent performance improvements, especially in dense or noisy environments.
Reinforcement learning dynamically adapts to channel conditions, outperforming static sensing schemes.

Al-empowered CR systems outperform traditional methods in detection, throughput, and latency. Key
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observations:

e Detection accuracy benefits from higher SNR and robust Al models.
e Adaptive scheduling effectively lowers latency for large networks.

e Throughput scaling saturates under
interference, suggesting the need for
interference management strategies.

These findings align with prior studies emphasizing lightweight Al integration for real-time deployment

[71-18].
VI. ENABLING TECHNOLOGIES FOR 6G COGNITIVE SYSTEMS

A. Terahertz and Visible-Light Communication

6G systems are expected to use THz and visible-light frequencies, requiring adaptive learning for high-
bandwidth utilization.

B. Reconfigurable Intelligent Surfaces (RIS)

RIS enhances signal reflection and directivity. Al models can dynamically control surface configurations
to improve SNR and energy efficiency.

C. Edge and Cloud Intelligence

Combining edge computing with centralized cloud learning provides real-time adaptation and low-latency
inference, critical for Al-enabled CR.

VIl. APPLICATIONS OF AI-DRIVEN COGNITIVE 6G SYSTEMS

A. Smart Cities

Intelligent communication networks can manage traffic signals, environmental sensors, and public safety
systems autonomously using Al-enabled CR.

B. Autonomous Transportation

Vehicles exchange massive sensor data requiring uninterrupted connectivity. Al-based spectrum learning
ensures safe and reliable vehicular networks.

IJSAT25049470 Volume 16, Issue 4, October-December 2025 7



https://www.ijsat.org/

IJSAT

j’_ International Journal on Science and Technology (IJSAT)

e i E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

C. Smart Healthcare

Remote patient monitoring and robotic surgery demand low latency and reliability. Cognitive 6G networks
dynamically allocate resources to maintain stable links.

D. Industrial 10T and Automation

Factories use Al-controlled networks to manage robotic systems with precise timing and adaptive channel
switching.

VIll. FUTURE RESEARCH DIRECTIONS AND CHALLENGES

Despite promising outcomes, several challenges must be addressed for real-world deployment.

1. Computational Complexity: Deep-learning models demand high processing power; lightweight
architectures are needed for edge devices.

2. Security and Privacy: Decentralized Al models must ensure data integrity and privacy during
training

3. Energy Consumption: Al inference increases energy use, necessitating energy-aware
optimization techniques.

4. Integration with Quantum and Neuromorphic Computing: Future research should explore

hybrid models that merge quantum computing with Al for ultrafast decision-making.

5. Standardization and Interoperability: Cross-vendor frameworks must adhere to global
standards to enable large-scale adoption.

These directions open opportunities for sustainable, secure, and self-evolving communication networks.

IX. CONCLUSION

This paper presented an expanded analysis and Python-based implementation of Al-driven cognitive
communication systems for 6G. By integrating supervised and reinforcement learning algorithms, the
system achieved significant improvements in detection accuracy, throughput, and latency.

Through comprehensive modeling and simulation, the study demonstrated that Al empowers CR systems
to manage spectrum efficiently and adaptively. Future extensions will focus on federated edge learning,
hardware-in-loop testing, and cross-layer Al optimization.
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