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Abstract:

The fast adoption of encryption protocols like TLS 1.3 and HTTPS has resulted in a significant proportion
of today's internet traffic being encrypted to maintain privacy and data protection since the beginning. But
traditional intrusion detection systems (IDS) face tough challenges in this job. Those devices have deep
package checking abilities on common protocols, thus posing a huge complexity when the data packets
are encrypted (They fail when this data is encrypted). Encrypted Traffic Analytics (ETA) is now gaining
wide acceptance as a strong solution to detect bad operations; however, the traffic is still encrypted, so
there's no question about data confidentiality. In this paper, we explore machine learning-based approaches
to intrusion detection in encrypted network environments. The paper comprises techniques that use
statistical features, flow metadata, packet timing, and sequence patterns to identify benign and malicious
traffic clearly. It also assesses several supervised and unsupervised models, specifically Random Forest,
Support Vector Machines, and Deep Neural Networks, to evaluate the classification performance against
known threats and false positive reduction. As a part of this paper, there are also considered trade-offs
between detection performance, computational overhead, and privacy concerns. The findings additionally
underscore that the reach of machine learning techniques to advanced ETA frameworks, as a result, offers
network defence, strength, scalability of network security, and the power to conduct monitoring of what
is happening in domains without breaking the qualifications of user privacy.

Keywords: Encrypted Traffic Analytics (ETA), Machine Learning-based Intrusion Detection, Network
Security, Privacy-Preserving Threat Detection, Encrypted Network Traffic Classification.

I. INTRODUCTION

Over the years, the popularity of Internet connectivity has rapidly grown to the point that a significant
fraction of all traffic is now encrypted using modern technologies like HTTPS, SSL/TLS, MAP, and
VPNs. Ultimately, the increased use of encrypted traffic has made it difficult, if not impossible, for
traditional network-based security technologies such as IDS/IPS to inspect, detect, and mitigate unwanted
actions on the network. On top of the increased user privacy and protection of user data, encryption serves
to obfuscate even the most blatantly destructive behaviors, such as command-and-control (C2)
communications, data exfiltration, and malware delivery, all of which can be used to disrupt an
organization. This naturally puts us in a position where the hunt for new technologies like Encrypted
Traffic Analytics (ETA) that enable us to detect new threats generated by encrypted traffic without
decryption is urgent [1].

The reason why ETA is required comes from having to protect one’s privacy (which can be enforced by
several laws, some of which are the GDPR, CCPA, and HIPAA), as well as having to ensure the security
of the enterprise network by nature. Conventional mechanisms that assess packet contents using deep
packet inspection (DPI) technology by comparing them to different known signatures are no longer
feasible in the zero-trust and privacy-focused modern environment. Consequently, the general approach
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has transitioned from looking for detected biomarkers in the transmitted files’ (images) content to using
metadata, statistical properties, and machine learning (ML) to identify patterns that are not usual based on
the connection-level characteristics like byte size as well as direction, timing, frequency [1].

The central question of this research is as follows:

Is it possible to detect malicious encrypted traffic robustly and accurately using only flow-based metadata
with machine learning tools without having to compromise the encryption itself?

According to the experiments presented in the paper, CNNs have an advantage, achieving higher accuracy
in tasks involving the understanding of sketches/images. They performed well in their experiments,
achieving better accuracies in most cases. Specifically, CNNs that run on three channels [2].

However, their experiments showed that CNNs are not always consistent in their performance across
datasets and can perform worse than traditional, dataset-specific methods. In general, the researchers of
this study have shown both CNNs to be less model-agnostic compared to conventional methods with the
colour-shape and raw datasets, and more model-agnostic for hand-drawn sketches [3].

II. BACKGROUND AND RELATED WORK

A. Traditional Intrusion Detection Systems (IDS)

Incident detection and response technologies such as Snort, Suricata, or Bro are classical products in use,
which primarily act on payload content using the two most prominent detection methods: anomaly-based
or signature-based methods. Earlier, such systems were highly effective; however, with the growing trend
towards encryption, their accuracy started to degrade. While both TLS and VPN are new protocols
designed to hide the actual payload data, and even the handshake data is completely encrypted, which
leaves only basic data from the header ready to be analysed [3].

Traditional intrusion detection systems were developed to detect anomalies in regular network traffic on
the assumption that malicious payloads are statistically more likely than regular network traffic. If these
techniques are disrupted or rendered redundant by encryption, system administrators encounter a
significant challenge in detecting malicious activity.

B. Rise of Encrypted Traffic

The development of encryption has been a long-standing process. TLS 1.3, released in 2018, has no
boundaries for application data encryption. QUIC is a protocol of Google and the successor of HTTP/3. It
encrypts the majority of transport-layer fields. End-to-end encryption of more and more transport methods
flows from the more general adoption of VPNs, Tor, and Proxy as means of privacy and corporate remote
access. It is a widespread case when applied [4].

C. Encrypted Traffic Analytics (ETA) Approaches

These techniques prevent the notions of identity portal and behavior; the properties are examined:
o Quantity of packets, size, and gaps between them

Data transfer period and flow direction

Packet and byte diversity

Connection to Decipher Security Recommended switches (JA3)

Powerful ML models, such as Random Forests, CNNs, and RNNs, have shown promise in detecting botnet
activity and other forms of malware through learning signatures in the temporal and statistical behavior of
traffic flows.

Model interpretability and robustness: The predicted labels must be interpretable for the user so they can
understand the model’s output and the reason for the alert triggered [4].
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D. Prior Work

Draper-Gil, et al. (2016) and Sharafaldin, et al. (2018) have established the CICIDS family of datasets for
comprehensive intrusion analysis, comprising normal, benign, and malicious flows across several attack
vectors. Similarly, CIC's ISCX VPN-nonVPN dataset focuses on VPN traffic classification, as proposed
by the Canadian Institute for Cybersecurity (CIC), which involves encrypted traffic. In contrast, the CTU-
13 dataset, developed by the Czech Technical University, remains unbeatable for benchmarking botnet
traffic detection. Fine-grained appraisal:

o The recent literature has concentrated on the novel hybrid approaches that amalgamate flow
statistics with deep learning embeddings [5].
. Federated learning for privacy-preserving ETA across organizations.

o Explainable Al (XAI) frameworks for SOC interpretability.
Although the study has revolutionized the areas above, the generalization across different datasets and the
respect for data privacy remain unexplored, which this paper addresses through empirical means.

III. CHALLENGES IN ENCRYPTED TRAFFIC ANALYTICS

A. Technical Challenges

o Limited Feature Visibility: For encryption, payload-based features, such as HTTP headers and
content types, cannot be accessed. To achieve its objectives, ETA must depend only on features of network
traffic, such as packet timing, size, and direction, that are always deterministically available and are not
affected by network jitter.

o Protocol Heterogeneity: Today’s traffic is a mix of different protocols, including TLS, QUIC, SSH,
and a VPN’s encapsulated one. Each one exhibits different characteristics, which makes the training
process of a universal model more error-prone. An important observation is that the effect of a different
protocol feature on a packet can lead to a labelling error because the model was not trained on that protocol
separately [5].

J Dataset Bias: Model evaluation is very landscape-specific. We tested our ETA model using three
different types of datasets: Synthetic, with CICIDS, and CTU-13, and a real enterprise network we
accessed through our industry partner request.

o Label Granularity: Typically, labelling of encrypted flows as benign or malicious may depend on
external context (e.g., known redirections, correlations with an IDS).

B. Operational Challenges

Data Handling in ETA Systems Implementations: Systems implementing ETA face compliance
requirements (public disclosure of treatment strategies by CIPD) under GDPR (Article 25) and HIPAA
(Section 164.312). Session data, user-level exposed data, and even packet-level exposed data must be
encrypted to meet these regulations [6].

C. Research Challenges

e Evasion of opposition. It includes attacks that can be easily blended into benign patterns used by
attackers, also with the help of padding, timing, and randomization. In such conditions, it is becoming
a greater challenge for ML to reach the desired level of robustness.

e Explainability and trust. Deep models trained using black-box methods can provide high prediction
accuracy at the cost of no or very low interpretability. This issue is seen as an obstacle to widespread
deployment of ML models in regulated environments such as healthcare [6].

e (Cross-dataset generalization, which links the model to one dataset (say CICIDS) but fails to generalize
the model to a different one — e.g., CTU-13 — and may require domain adaptation/transfer learning.

IV. MACHINE LEARNING APPROACHES FORETA
Cost Estimate/Framework for AI/ML-Driven ETA: A Comparative Assessment of Four Core Algorithms
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A. Logistic Regression (LR)

A straightforward linear model that offers a good balance between interpretability and computational cost.
In this scenario, LR was able to have overfit against CICIDS 2018, effectively demonstrating the
separability of the dataset’s numerical flow-based features [7].

B. Stochastic Gradient Descent (SGD)

With the logistic loss, SGD-based classifiers provided an efficient alternative to batch-style optimization.
Akin to many machines learning models, tuning regularization, and learning rates is essential for optimal
performance, which in our hands resulted in an F1 = score of approximately 1.0 on CICIDS and an F1
score of 0.55 on CTU-13, further supporting our observations that machine learning models are susceptible
to data quality and feature distribution.

C. Random Forest (RF)

An ensemble method consisting of many decision trees is, in turn, vulnerable to the noisiness and
nonlinearity of most modern security datasets. The model achieved AUC = 1.00 and F1 = 0.99 without
stack wisdom and AUC = 0.55 using Turkish MIST, providing key insights into how these models'
performances are very dependent on the data's distribution characteristics.

D. Gradient Boosting (GB)

An Additive ensemble method focusing on the hard-to-classify samples. GBM excels at precision and
recall, although its generalization ability is slightly less than that of LR [7].

V. PROPOSED AND REVIEWED SOLUTIONS: PRIVACY-PRESERVING ETA

FRAMEWORK

A. Conceptual Architecture

A privacy-preserving ETA pipeline can be generalized into the following modular architecture:

e Data Collection Layer: Passive network sensors capture NetFlow or IPFIX records, collecting
statistical metadata such as packet size, byte count, flow duration, and inter-arrival times.

e Feature Engineering Layer: Raw NetFlow features are normalized, aggregated, and optionally
enriched with TLS handshake fingerprints (when available).

e Modeling Layer: ML models (e.g., Random Forests, Gradient Boosting, CNNs) are trained using
benign/malicious flow samples. In operational systems, online learning can adapt to new traffic
patterns [8].

e Privacy Preservation: To comply with GDPR/HIPAA, no packet decryption is performed. Feature
extraction occurs at the network edge, with data anonymization and aggregation before central
analysis.

e Federated Learning Extension: Multiple organizations train local ETA models and share only
gradients or model weights, not raw traffic data. The emphasis is put on collective improvement
without breaching privacy.

B. Implementation in this Study

Adapted and rewritten in a more simplified form of a text, the text looks like: This study test was run
following validations in Python:

e  Matplotlib was selected for the study’s pre-processing.

e  Scikit-learn for experiment (model training and evaluation).

e Pandas for visualization

Every dataset was pre-processed independently and separately:

e CICIDS 2018: 1048575 flow-display samples and 80 column feature vectors [8].
e ISCX VPN-nonVPN: 44191 flow-display samples and 25 column feature vectors.
e (CTU-13:10,598,771 flows x 11 features
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The outliers were removed after a robust winsorization and standard scaling of the features, including
identifying the missing values. The conversion from multiple labels into binary class labels i.e., "Benign",
"VPN", and "Botnet", into one binary class.

VI. CASE STUDIES AND EXPERIMENTAL RESULTS
A. Dataset Overview

Dataset | Records | Features Label Context
Distribution
CICIDS | 1,048,575 80 67% Benign, | HTTPS, web
2018 33% attacks
Malicious
ISCX 44,191 25 100% VPN | VPN encryption
VPN- (subset) analysis
nonVPN
CTU-13 | 10,598,771 11 97.5% Botnet C2
Background, | communications
2.5% Botnet

Benign and malicious flows are two categories that showed a clear differentiation in the proposed
categories—in comparison to CICIDS, the CTU-13 dataset presented more imbalanced characteristics,

accurately capturing stealthy botnet traces [9].

B. Model Performance (Intra-Dataset)

Dataset Model | Accuracy | Precision | Recall | F1 | ROC- | PR-

AUC | AUC

CICIDS 2018 | Random 1.00 1.00 1.00 | 1.00 | 1.00 1.00
Forest

CICIDS 2018 SGD 1.00 1.00 1.00 | 1.00 | 1.00 1.00

CICIDS 2018 | LogReg 1.00 1.00 1.00 | 1.00 | 1.00 1.00

CTU-13 Random 0.56 0.54 0.55 | 055 0.73 0.70
Forest

CTU-13 SGD 0.23 0.11 0.19 | 0.13 | 0.51 0.48

Random forest and gradient boosting showed the highest precision and recall on CICIDS, wherein GRAL

had close to perfect discrimination.
In the case of CTU-13, the F1 score reflected a significant gap of F1 = 0.55. It shows that detecting
encrypted botnets remains a major problem, especially without deep context information on network

protocols [10].
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Top-12 F1 across experiments
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Intra::CICIDS2018 | GradBoost
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Figure 1: Top-12 F1 Scores Across Experiments

C. ROC and Precision-Recall Analysis

The Random Forest model is shown to have an AUC = 1.00 against the CICIDS data set. The ROC and
PR curve of the Random Forest model is shown in Figures 2 and 3.

The value of the AUC = 1.00 and the Average Precision (AP) = 1.00 indicate perfect classification
boundaries. However, these are likely due to the artificial separability in the dataset on which the model
is being trained [10].

ROC - RF on CICIDS2018
1.0

o o o
iS o @
L

True Positive Rate (Positive label: 1)
o
L

—— Classifier (AUC = 1.00)
0.0 4

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1)

Figure 2: ROC Curve (Random Forest on CICIDS 2018)
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Figure 3: Precision-Recall Curve (Random Forest on CICIDS 2018)

D. Cross-Dataset Generalization

The experiment aimed to determine how machine learning systems would perform in real-world situations:
o Train on CICIDS + ISCX — Test on CTU-1

o Train on CICIDS + CTU-13 — Test on ISCX

. Train on ISCX + CTU-13 — Test on CICIDS

Results showed:

o CICIDS-trained models generalized poorly to CTU-13 (F1 < 0.5), confirming that traffic domain
differences and imbalance hinder portability.

o Cross-trained Random Forests achieved moderate recall on ISCX, suggesting some transferable
flow-level statistical patterns [11].

E. Feature Importance
The permutation importance factors with top ranks were found to be:
o Flow Duration
o Tot Fwd Pkts / Tot Bwd Pkts
o Flow Pkts/s
o Flow Bytes/s
o Bwd Pkt Len Mean
These properties are causally and temporarily related to dynamic flow intensity and dynamic flow
asymmetry, which are key dimensions for exfiltration, scanning, and DoS attack detection.
This demonstrates that the feature of flow has universality, and when applied to anomaly detection
techniques, it yields better results [12].

F. Confusion Matrix Insights
Analysis of confusion matrices has shown:

o CICIDS models achieved zero false positives and negatives.
o CTU-13 showed higher false negatives (missed botnets) due to imbalance and subtle malicious
flows.

ETA demonstrates outstanding performance in personalization learning within the domain but exhibits
poor domain generalization capability, highlighting the need for a federated approach with domain
adaptation to detect different EEG signal domains [13].
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VII. DISCUSSION

The findings clearly demonstrate that ML models relying on metadata can effectively detect encrypted
threats without evaluating payload data. However, outstanding scores on CICIDS 2018 should not be so
surprising, as the dataset used for this benchmark is likely much cleaner than live traffic.

A. Insights

o Model Dependence: Ensemble classifiers (RF, GB) outperform linear models when faced with
noisy and nonlinear abundance patterns.

J Dataset Bias: Synthetic datasets (CICIDS) yield inflated metrics, while real-world ones (CTU-13)
expose limitations.

o Feature Stability: Duration- and rate-based features generalize across datasets; packet-level
features are more dataset-specific.
o Operational Trade-off: Higher accuracy often correlates with reduced explainability, emphasizing

the need for XAl integration [13].

B. Comparative Context

Framework | Method Decrypti | Priva | Accuracy
on cy (avg.)
Required | Risk
Traditional | Payload v High | 85-95%
IDS (Snort, | Signature (unencrypte
Suricata) Matching d only)
Cisco ETA Flow + TLS | % Low ~96%
Fingerprint
S
Proposed Flow ) ¢ Low | 92-99%
ML ETA Metadata + (CICIDS)
ML

This discovery seems to coincide remarkably with the Future Industrial Encryption Traffic Analytics
(ETA) predictive behaviors and platform manufacturers' trend in (Cisco, Palo Alto, Cortex, XDR, etc.,)
following the model anomalies using generic flow streams and machine learning rather than requiring
packet-level content [14].

VIII. CONCLUSION AND FUTURE SCOPE

A. Summary of Findings

The search provides proof that Machine learning based Encrypted Traffic Analytics (ETA) can spot
malicious encrypted flows precisely, without having to decrypt. Across three diverse datasets:

o CICIDS 2018 achieved near-perfect classification due to high-quality feature separation.

o CTU-13 Botnet presented real-world difficulty with partial success (F1 = 0.55).

o ISCX VPN-nonVPN contributed insight into VPN traffic representation, though limited by single-
class subsets.

B. Key takeaways:

J Highly detailed metadata may be generated, but these more detailed features do not seem to be
necessary to obtain high classification accuracy.

o Building fewer, more global features seems to work just as well as many more local features.

o Generalizing models to data from multiple, disparate domains remains an open problem.

o Privacy-preserving data analytics, through the capability of selectively sharing features rather than

real-valued data, appears to be a practical next step for real-world data science [14].
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C. Limitations

o Dataset imbalance and synthetic labelling limit real-world representativeness.
o Lack of QUIC and modern TLS 1.3 traffic reduces contemporary relevance.
o Absence of deep explainability (e.g., SHAP values) constrains interpretability.

D. Future Directions

e Decentralized Al for Security: Develop techniques using decentralized Al for processing sensor data.
For instance, consider developing Al algorithms that leverage decentralized computation approaches,
such as federated learning [15].

e Adversarial Robustness: Furthermore, create models that improve sensor signal processing (SNAP)
to process data either at the data source or at the federated data repository, thereby preventing the
need for centralized coordination of more compute-intensive algorithms that run at the data source to
improve information security and privacy.

e Explainable Al: Integrate approaches to ensure the trust of users who are affected by the decisions
made by Al systems.

e Adversarial ML: Develop and employ approaches and incentives to prevent the subversion of Al as
a technology and as developed systems. Where potential adversarial or other misuse scenarios are
identified, develop mechanisms to ensure that achieving large-scale harm or impact is sufficiently
complex [15].

e Machine Learning Knowledge Creation: Create better mechanisms for ensuring data quality by
focusing on the imposition of rules.
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