

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Suggestive Climate Adaptive Facades for Enhancing Energy Efficiency in Buildings: A Case of the Tropical Climate

Samyuktaa Singaravel

school of Planning and Architecture itssamyuktaa@Email.Com

Abstract.

The Escalating Impact Of Global Warming Has Amplified The Demand For Heightened Cooling Requirements In Buildings, Presenting Challenges In Terms Of Energy Consumption And Environmental Consequences. This Necessity Becomes Even More Pronounced In Tropical Climates, Characterized By Consistently Elevated Temperatures. In Response, The Growing Prevalence Of Adaptive Facade Technologies Emerges As A Solution To Address Concerns Surrounding Overheating And The Well-Being Of Occupants In Advanced And Efficient Buildings.

This Research Paper Aims To Explore The Operational Efficiency Of Specifically Identified Facades In Tackling These Challenges Within Tropical Regions. Through A Meticulous Exploration Involving An Extensive Literature Review, Scrutiny Of Case Studies From Existing Projects, And A Thorough Analysis Of Amassed Data, The Study Seeks To Comprehensively Evaluate The Advantages Presented By These Facades. The Objective Is To Illuminate Their Practical Applications And Effectiveness, Offering Insights Into Their Role In Overcoming Obstacles Related To Temperature Control And Enhancing Occupant Welfare In Tropical Climates.

Keywords. Adaptive Facades, Green Buildings, Tropical Climate-Adaptive, Thermal Comfort, Energy Efficiency

1. Introduction

Due To Rapid Urbanisation, Indian Cities Are Witnessing Immense Demographic Expansion, Leading To The Gradual Degradation Of Our Ecological Environment, And A Global Environmental Crisis Has Emerged. According To The 2021 Report Submitted By India To Unfccc At The Biennial Update Report (Bur), The Building And Construction Sector Accounts For 32% Of The Nation's Greenhouse Gas Emissions. As India Sets Its Sights On Achieving Carbon Neutrality By 2050, Green Building Practices Have Gained Significant Attention In Contemporary Research.

Increasing Migrants From Rural Areas To Cities In Pursuit Of Improved Prospects Has Created An Urban Sprawl. Multi-Storey Buildings Are Often Opted As A Solution To Address Challenges Such As

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Limited Land Availability, Rapid Urbanisation, And The Need To Accommodate A Growing Population. These Tall Structures Can Maximize Land Use Efficiency And Provide More Services In A Limited Footprint.

India Has Varied Climatic Zones Due To Its Large Geographical Expanse, From Temperate Climate In The North To Tropical In The South. The Tropical Climate Presents Unique Challenges Due To The Intense Heat And High Humidity. This Creates A Rising Energy Demand For Cooling, And The Urban Heat Island Effect Is Being Made Worse By The Hot Air Emitted From Operating Air Conditioners.

India Moved To A Market-Based Economy In The 1990s, And The Country's Cities Saw A Dramatic Transformation In Design. Westernised Architecture Styles Gained Considerable Attention, Bringing Multi-Story Glass Structures To India, Making Buildings Less Tolerant Of The Tropical Heat. While Numerous Considerations Contribute To Improving Internal Thermal Comfort, The Building's Form And Facade Hold A Pivotal Position Due To Their Role In Shaping The Building's Interaction With The External Environment.

At Present, Indian Metropolitan Cities Are Undergoing An Economic Boom, Resulting In A Substantial Surge Of Multi-Story Construction Projects Under Development. There Exists A Need To Study The Methods And Approaches Of Internal Thermal Performance Optimisation Through Building Form And Facade Design.

1.1. Aim

To Study The Importance Of Building Facade Design In The Energy Efficiency Of High-Rise Buildings In Tropical Regions And To Analyse The Effects Of Trending Facade Designs On Energy Consumption And Thermal Comfort.

1.2. Objectives

- To Understand The Challenges Of Designing For The Indian Tropical Climate.
- To Investigate Innovative Future Trends In Green Building Facade Technologies And Strategies That Can Help Minimise The Effects Of Climate Change—Such As Extreme Heat
- To Study The Effect On Energy Consumption For Lighting, Cooling And Ventilation Based On Facade Design With The Help Of Case Studies.
- To Establish Facade Designs That Help Tackle The High Heat And Humidity Of Indian Tropical Climates.

1.3. Scope

India's Climate Reflects Its Diverse Geography, However, It Can Be Broadly Classified As Having A Tropical Climate. The Tropical Climate Has Further Subdivisions But By And Large These Climatic Zones Are Warm Throughout The Year Due To More Exposure To The Sun, And Lack Seasonal Variation.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Tropical Climate Poses Unique Design Challenges Due To High Temperatures, Intense Solar Radiation, Humidity And Occasional Extreme Weather Events. These Challenges Are Amplified In The Case Of High-Rise Buildings Often Due To The Provision Of The Curtain Wall Glass Facade.

Therefore, It Is Essential To Study -

- Solar Heat Gain And Cooling Loads
- Optimal Daylighting And Glare Control
- Ventilation And Airflow Streamlining

1.4. LIMITATIONS

Certain Facade Designs Considered For Study Have Yet To Be Implemented In Cities With Tropical Climates, Hence Case Studies From Other Regions With Similar Climate Conditions In Terms Of Heat And Humidity Have Been Considered For This Study.

1.5. METHODOLOGY

This Research Paper Employs Two Methods To Study The Suggestive Types And Effects Of Climate-Adaptive Facades When Employed In A Tropical Climatic Zone:

- Literature Review To Make A Comprehensive Study Of The Existing Literature On Climate-Adaptive Facades, Tropical Climate, Energy Efficiency And Occupant Comfort.
- Case Studies To Perform Studies On Existing Multi-Storey Building Structures And Access The Internal Environment Quality Based On Facade Treatments And Building Form. This Method Offers A Collection Of Data From Various Sources And Tools For Evaluation.
- Content Analysis To Analyse The Collected Data To Conclude The Optimal Design Solutions To Enhance Environment Quality With Better Energy Performance Buildings For An Indian Tropical Climate Context. This Method Reviews And Analyses The Collected Data To Conclude.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

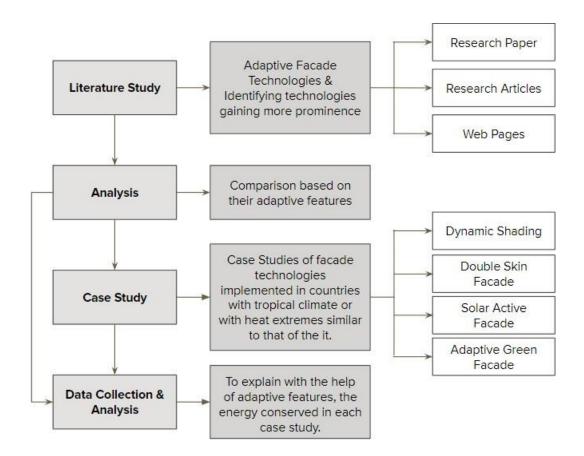


Figure 1. Methodology Chart

2.Literature Review

India, As A Rapidly Growing Economy, Faces Multifaceted Challenges In Its Built Environment Due To Its Climatic Conditions And Increasing Energy Demands. The Development Of Contemporary High-Rise Structures Has A Substantial Impact On The Terrain's Current Climate And The Ecological Equilibrium Of The Surrounding Area.

The National Green Tribunal (Ngt) Alleged That The Glass Façades In Modern High-Rises Contribute To Global Warming And Lead To Climate Change. Using Green Climate-Adaptive Facades Not Only Shields The External Environment From The Monotonous Glass Curtainwall Facades But Also Assists With Energy Consumption.

The Facade Part Of A Building Envelope Forms The Frontal Skin Of The Building, Which Is In Direct Contact With The Eternal Environment. Similar To Any Living Organism, The Function Of The Skin, Along With Other Surface Elements, Extends Far Beyond Its Superficial Appearance And Plays A Fundamental Role In The Overall Functioning Of The Organism. Facades Constitute A Protective Barrier Separating A Building's Interior From The External Environment.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Climate-Adaptive Facades Play A Crucial Role In Mitigating Global Warming Caused By Conventional Glass Facades By Addressing Key Issues Associated With Excessive Heat Gain And Energy Consumption In Buildings. Unlike Traditional Glass Facades That Often Contribute To Increased Heat Absorption And High Energy Usage, Climate-Adaptive Facades Utilize Innovative Technologies To Reduce These Adverse Effects. It Regulates The Amount Of Solar Heat Entering Buildings. These Facades Incorporate Dynamic Elements Such As Smart Glazing, Adjustable Shading Systems, And Responsive Ventilation, Enabling Them To Adapt To Changing Environmental Conditions. By Controlling The Amount Of Sunlight And Heat Penetration, Climate-Adaptive Facades Effectively Minimise The Reliance On Air Conditioning Systems, Thereby Reducing Energy Consumption And The Associated Greenhouse Gas Emissions.

From The Environmental Perspective, There Is A Critical Need To Reduce Energy Consumption In Buildings. India's Building And Construction Sector Currently Accounts For Almost 1/3 Of The Total Energy Consumption. Climate Adaptive Facades Offer A Practical Solution By Dynamically Responding To Varying Environmental Conditions. They Enable Buildings To Regulate Interior Temperatures, Minimize Heat Gain, And Maximize Natural Light Penetration, Reducing Dependency On Artificial Heating, Cooling, And Lighting Systems. This Energy Efficiency Is Pivotal In A Growing Economy Like India, Where Energy Demands Are Escalating Alongside Economic Development.

India Has Begun Implementing Climate-Adaptive Facades In Its Architectural Landscape, Especially In The Recent Construction Projects Emphasising Energy-Efficient Design. The Adoption Of Climate-Adaptive Facades Is Gradually Gaining Traction Across Various Urban Centres In The Country. There Is A Need To Study Climate-Adaptive Facades For The Tropical Climate To Understand The Energy Consumption Patterns In The Different Facade Designs.

2.1. Tropical Climate

The Indian Tropical Climate Is Characterized By High Temperatures, Humidity, And Distinct Wet And Dry Seasons. Cities Like Mumbai, Chennai And Bengaluru Experience This Climate Pattern, Summers Are Hot And Humid, With Temperatures Often Exceeding 30-35 Degrees Celsius (86-95 Degrees Fahrenheit). The Increase Humidity Is Due To The Proximity Of The Coastline In These Cities. Monsoons Bring Heavy Rainfall During The Wet Season, While The Dry Season Experiences Minimal Precipitation.

Designing Tall Buildings In This Climate Presents Numerous Challenges. Temperature Regulation Poses A Significant Difficulty Due To The Extreme Heat During Summer. Heat Gain In Tall Buildings Is A Primary Concern, As They Are More Exposed To Direct Sunlight. Resulting In Increased Internal Temperatures, Requiring Efficient Cooling Systems And Insulation To Maintain Comfortable Indoor Environments. Additionally, The High Humidity Levels Amplify Discomfort, Making It Crucial To Manage Moisture Within Buildings, Which Can Impact Occupants' Health And Building Integrity.

Reducing Energy Consumption In Buildings Requires A Concentrated Focus On Various Aspects Of Building Design, Particularly Concerning The Building Envelope And Facade. Climate-Adaptive

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Facades Address The Challenges Of Temperature Regulation, Rainfall Management, And Heat Gain In Tall Buildings Within Tropical Climates. These Innovative Facade Designs Enhance Building Performance, Improve Occupant Comfort, And Promote Green Design By Minimizing Energy Consumption, Ultimately Creating More Resilient And Environmentally Friendly Structures.

2.2. Climate-Adaptive Facade Features

Climate Adaptive Facades Combine Active And Passive Features, Combining Natural Design Elements With Modern Tech To Improve Building Performance And Respond To External Conditions.

These Facades Are Designed To Adjust To Environmental Conditions To Improve A Building's Functionality, Energy Efficiency, And Occupant Comfort. They Contribute To Reducing A Building's Energy Consumption By Regulating Heat Gain, Optimizing Natural Light, And Enhancing Insulation. They Control Thermal Fluctuations To Maintain Comfortable Indoor Temperatures. Facades Regulate How Much Natural Light Enters A Space, Reducing Glare And Improving Internal Lighting.

Passive Features Within Climate-Adaptive Facades Involve Design Elements That Operate Without External Energy Inputs. These Consist Of Natural Ventilation Techniques, Facade Materials, And Building Orientation. Passive Features Take Advantage Of The Building's Surroundings To Maximise Energy Efficiency. For Instance, Optimal Orientation Reduces Solar Heat Gain And Maximises Natural Light Penetration, Which Lessens The Need For Artificial Lighting And Air Conditioning. Thermal Insulation Stabilises Interior Temperatures. High-Performance Materials Like Phase-Change Materials Or Insulated Glazing Help With This. By Facilitating Airflow To Control Indoor Climate, Natural Ventilation Systems—Like Stack Ventilation Or Movable Windows—Lessen The Need For Mechanical Ventilation.

Climate Adaptive Facades With Active Features, On The Contrary, Use Systems And Technologies That Need External Controls.

These Components Adapt Dynamically To Shifting Environmental Conditions. Systems For Dynamic Shadings, Like Motorised, Actively Control The Amount Of Sunlight That Enters A Space, Lowering Heat Gain And Glare Or Adjusting Their Transparency Or Tint Levels In Response To External Factors, Windows With Smart Glass Technologies Maximise Natural Light While Reducing Excessive Heat. Control Systems With Sensors Monitor Temperature, Light Levels, And Occupancy, Among Other Variables. This Enables Real-Time Adjustments To Facade Elements, Thereby Increasing Energy Efficiency And Comfort.

3. Classification Of Promising Technologies

Climate-Adaptive Facades Are Gaining Traction In Modern Architecture Due To Their Efficiency And Environmental Benefits. There Exists A Wide Range Of Adaptive Facade Categories And Subcategories. The Facades Under Discussion Are:

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

- Dynamic Shading

- Double Skin Ventilated Facade

- Solar Active Facade

- Green Adaptive Facade

These Facades Chosen For Study Have Been Identified From Research Papers, Research Articles And Online Interviews Discussing Trends In Climate-Adaptive Facades.

3.1. DYNAMIC SHADING

A Dynamic Façade Is The Exterior Of A Building That Can Adapt To The External Environment To Enhance Its Performance. This Reduces The Amount Of Energy Consumed By Building Services Systems In Regulating The Interior Environment Of The Building. The Building's "Skin" Is Dynamic And Can Transform Based On Needs Rather Than Simply Static.

It Is Considered One Of The Most Effective Methods Of Interfacing Efficiently Between Indoor And Outdoor Environments. These Facades Use Various Components And Technologies To React Actively To Changing Temperatures, Sunlight Intensity, And The Needs Of Their Occupants. The Key Feature Of Dynamic Facades Is The Ability To Regulate Solar Heat Gain And Glare. They Use Actively Adaptive Shading Systems, Such As Movable Louvres, Blinds Or Smart Glass, To Regulate The Amount Of Sunlight Entering The Building. Reducing Heat Gain And Optimising Natural Light Levels Lessen The Need For Artificial Lighting And Cooling Systems.

The Inclusion Of Smart Control Systems And Sensors Helps Monitor Factors Like Temperature, Humidity, Or Sunlight Intensity, Enabling Real-Time Adjustments To The Facade Elements. This Responsive Technology Allows For Automated Changes, Enhancing The Building's Performance And Ensuring Occupants' Comfort.

Dynamic Facades Reduce Environmental Impact, Increase Indoor Comfort, And Improve Energy Efficiency Contributing To Green Building Design. They Represent A Shift Toward Adaptive And Interactive Building Envelopes, Showcasing The Integration Of Advanced Technologies And Innovative Design Strategies To Create More Responsive, Efficient Building Structures.

The Façade's Response Can Occur At Two Different Levels: At The Macro Level, When It Involves Adjusting Its Arrangement Through Moving Components, And At The Micro Level, When It Comes To Modifications That Impact The Composition Of A Material.

Dynamic Facades Can Be Classified Into Multiple Categories Based On The Principles Of Motion And Movement, D. The Four Common Typologies Have Been Illustrated In Figure 2. Among Them, Moving Motion Is One Of The Most Commonly Used.

Recently, Rotating And Folding Motions Have Gained Increasing Popularity; However, As A Limitation,

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

The Designs Generally Are Not Adequately Supported By Performance-Based Optimization.

On The Contrary, Scaling Motion Is Not A Widely Used Solution Because Of Material Limitations And Expensive Prices.

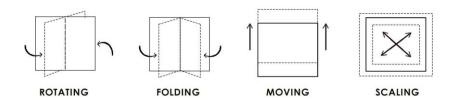


Figure 2. Movement Typology Of Dynamic Facade Components

Incorporating Adaptable Components Like Sunshades, Louvres, Or Blinds, These Facades Modify Their Positions In Response To The Sun's Trajectory During The Day. In Tropical Regions Characterized By Strong Sunlight, These Shading Mechanisms Dynamically Manage The Penetration Of Sunlight Into The Building, Mitigating Heat Accumulation While Permitting Natural Light. This Adaptive System Aids In Stabilizing Indoor Temperatures And Reducing Dependency On Excessive Artificial Cooling Methods.

3.2. AVFS INTEGRATED WITH DOUBLE SKIN FACADE

Double Skin Facade (Dsf) Has Emerged As A Promising Innovation, Significantly Impacting The Energy Efficiency Of Buildings. A Dsf Is A Structural System Comprised Of Two Layers, One That Is Fixed And One That Can Move With The Wind, Allowing For A More Efficient Form Of Ventilation. This Facade Design Not Only Enhances The Aesthetics Of The Building But Offers Substantial Environmental Benefits By Reducing Energy Consumption And Improving Indoor Comfort Levels.

Dsf Serves As A Thermal Shield Against External Environmental Influences. The Outer Layer Shields The Building From Direct Sunlight, Reducing Heat Gain. The Intermediate Cavity, Acting As An Insulating Air Pocket, Facilitates Natural Ventilation, Allowing For The Exchange Of Air And Heat Transfer. This Ventilation Assists In Moderating Indoor Temperatures, Lessening Reliance On Mechanical Heating And Cooling Systems. It Allows Natural Ventilation And Air Renewal Creating A Healthier Environment.

To Reduce Glare And Further Regulate Interior Temperatures, Solar Shading Devices Integrated Into The Dsf Also Control The Amount Of Solar Radiation Entering The Building.

The Two Layers Are Constructed Either Out Of Glass Or Other Materials Or A Combination Of Materials Separated By An Open Cavity, Creating An Intermediate Space. The Channel (The Intermediate Space) In Between Can Be Separated By Up To 0.8–1.2 Metres. Usually, The Channel Is Ventilated (Either Naturally, Mechanically, Or Via A Hybrid System) To Minimise Overheating

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Problems During The Summer. The Utilization Of Dsf Represents A Progressive Advancement In The Architectural Approach For Extensively Glazed Tall Commercial Structures, Presenting An Evolutionary Shift From Traditional Fenestration Methods.

In Modern Building Practises, Dsfs—Which Lower Noise And Wind Speed—Are Becoming More Significant. Although It Is Debatable That The Usage Of Double Skin Facades Is Bound To Overheat In The Summer, This Can Be Reduced With Material Choice, Shading Mechanisms, Thoughtfully Planned Openings, And An Ideal Air Space Between The Skins.

Another Mechanism Employed For Hotter Weather Conditions Through A Phenomenon Known As The Chimney Effect, Discrepancies In Air Density Initiate A Cyclical Airflow, Allowing Warmer Air To Exit. As Temperatures Within The Cavity Increase, This Warm Air Is Naturally Expelled, Creating A Gentle Breeze In The Vicinity And Serving As A Barrier Against Excessive Heat Transfer Into The Building.

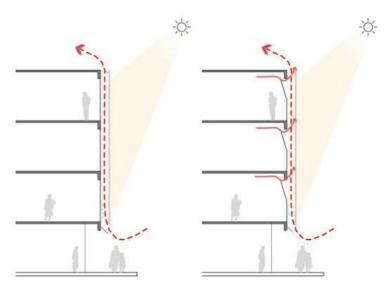


Figure 3. Airflow In Hot Weather Conditions

Employing A Double-Skin Facade Configuration Provides An Outer Barrier That Protects The Building From Direct Sunlight And The Severe Weather Typical Of Tropical Regions. The Space Between These Layers Facilitates Natural Airflow, Reducing The Transfer Of Heat And Establishing A Buffer Zone That Moderates Temperature Fluctuations Within The Building.

3.3. SOLAR ACTIVATED FACADE

With Environmental Consciousness And Green Practices Gaining More Popularity, Integrating Renewable Energy Sources Into Everyday Architecture Has Become Paramount. Solar-Activated Facades (Saf) Emerge As A Cutting-Edge Solution, Revolutionizing Buildings, And Utilizing Renewable Energy While Offering Multifaceted Benefits.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Solar Active Facades Are The Exteriors Or Surfaces Of Buildings That Use Various Technologies To Capture Solar Energy. These Facades Incorporate Solar Thermal Collectors Or Photovoltaic (Pv) Panels Integrated With The Building Envelope. In Tropical Climates, The Usage Of Solar-Activated Facades Offers Several Advantages Tailored To The Region's Specific Environmental Conditions.

These Facades Harness Sunlight, Converting It Into Usable Energy For Various Purposes. Photovoltaic Panels Made Up Of Solar Cells, Capture Sunlight And Convert It Directly Into Electricity. Alternatively, Solar Thermal Collectors Absorb Solar Radiation To Generate Heat, Which Can Be Utilized For Hot Water Systems Or Space Heating Within The Building. The Integrated Solar Components Within The Facade Are Strategically Positioned To Maximize Exposure To Sunlight, Often Through Orientation Optimization Or The Incorporation Of Active Tracking Systems That Follow The Sun's Path Throughout The Day. Once The Sunlight Is Captured, The Generated Electricity Or Heat Can Be Used Immediately To Power The Building's Electrical Systems Or Stored For Later Use Through Energy Storage Solutions Like Batteries. Overall, Solar Active Facades Utilize Innovative Technologies To Transform Building Exteriors Into Active Energy Generators, Contributing To Sustainability Efforts While Enhancing Energy Efficiency In Structures.

Saf Effectively Utilize The Abundant Sunlight Prevalent In Tropical Regions By Integrating Photovoltaic Panels, Thereby Efficiently Generating Electricity From Ample Solar Energy. This Reduces Buildings' Reliance On Traditional Power Grids, Promoting Renewable Energy Use And Alleviating Strain On Existing Energy Infrastructure.

Furthermore, Saf Helps Address Challenges Associated With Tropical Heat. Serving As An External Shield, These Facades Regulate Indoor Temperatures By Minimizing Heat Absorption Into The Building. This, In Turn, Lessens The Need For Excessive Air Conditioning, Enhancing Energy Efficiency. Consequently, Occupants Benefit From A More Pleasant Indoor Environment, Effectively Mitigating The Discomfort Caused By The Typical Heat And Humidity Of Tropical Climates.

Solar-Activated Facades Aid In Green Design Efforts By Reducing Carbon Emissions. Their Implementation Aligns With The Global Push For Environmentally Conscious Construction Practices. The Integration Of Saf In Tropical Regions Holds Promise In Not Only Addressing Energy Needs Sustainably But Also In Fostering More Resilient And Energy-Efficient Buildings, Offering A Viable Solution Tailored To The Climatic Demands Of Tropical Environments.

As The World Moves Towards A More Sustainable Future, The Potential Of Solar-Activated Facades In India Is Immense. With Abundant Sunlight Available For A Significant Portion Of The Year, India Stands To Benefit Greatly From Solar Energy Utilization. The Integration Of Saf In Indian Architecture Could Revolutionize The Construction Landscape, Especially In Densely Populated Urban Areas. By Harnessing Solar Power Through These Facades, India Could Address Its Energy Needs More Sustainably While Simultaneously Reducing Carbon Emissions.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

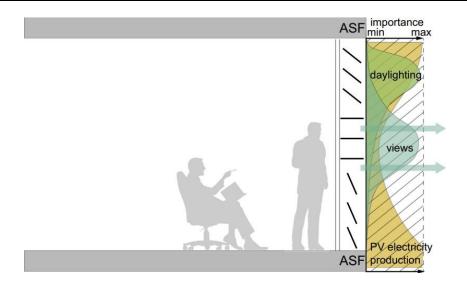


Figure 4. Solar Activated Facade Technology

3.4. Green Facade

Green Facades Signify A Pioneering Method In Eco-Friendly Architectural Design, Notably Advantageous In Tropical Settings. These Facades Integrate Vegetation, Either Through Climbing Plants Or Vertical Gardens, Onto Building Exteriors, Offering Numerous Benefits Tailored To The Specific Environmental Demands Of Tropical Regions.

In Tropical Climates Characterized By High Temperatures And Humidity, Green Facades Play A Pivotal Role In Mitigating The Harsh Effects Of The Climate. The Incorporation Of Greenery Provides Natural Shading, Reducing Solar Heat Gain And Minimizing Thermal Fluctuations Within Buildings. During Hot Weather, The Foliage Provides Shade, Reducing Solar Heat Gain And Mitigating Temperature Fluctuations Within The Building.

Likewise, In Cooler Climates, The Foliage Can Be Strategically Thinned To Allow More Sunlight For Warmth. This Shading Effect Helps In Regulating Indoor Temperatures, Consequently Reducing The Need For Excessive Air Conditioning. By Acting As A Natural Barrier Against Heat, Green Facades Contribute Significantly To Energy Conservation, Fostering A More Comfortable Indoor Environment For Occupants.

Moreover, The Vegetation In Green Facades Aids In Humidity Control And Moisture Regulation. Through Transpiration, Plants Release Moisture, Creating A Microclimate That Helps In Cooling The Surrounding Air. This Process Of Evapotranspiration Assists In Reducing The Overall Humidity Levels, Which Is Particularly Beneficial In Tropical Areas Prone To High Moisture Content. By Moderating Humidity, Green Facades Contribute To Improving The Comfort And Well-Being Of Building Occupants While Also Potentially Reducing The Occurrence Of Mould Or Mildew, Common Issues In Humid Climates.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Another Advantage Of Green Facades Lies In Their Ability To Enhance Air Quality. Plants Act As Natural Air Filters, Absorbing Pollutants And Particulate Matter From The Atmosphere. This Feature Is Especially Valuable In Urban Areas Where Air Pollution Is A Concern. Greenery Incorporated Into Facades Not Only Improves The Quality Of Air Within The Building But Also Contributes To Mitigating Air Pollution In The Surrounding Environment, Fostering A Healthier Living And Working Environment For Occupants.

This Natural Barrier Moderates Indoor Temperatures, Fostering A More Comfortable Environment And Decreasing Reliance On Mechanical Heating Or Cooling Systems.

Furthermore, Green Facades Promote Biodiversity And Urban Greening, Adding Aesthetic Appeal To Buildings And Positively Impacting The Local Ecosystem. They Create Green Spaces Vertically, Maximizing Land Use Efficiency In Densely Populated Urban Areas Common In Tropical Regions.

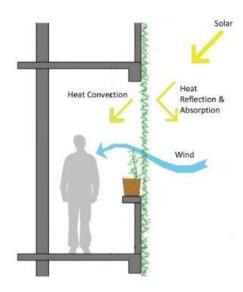


Figure 5. Green Adaptive Facade

3.5. Technology Comparison And Analysis

The Comparative Table Aims To Highlight Key Characteristics Of Discussed Facade Technologies - Dynamic Shading, Double Skin Facade, Solar Active Facade, And Green Facade—Focusing On Their Specific Attributes That Promote Energy Efficiency. By Examining These Distinct Facade Systems Side By Side, This Comparative Analysis Seeks To Provide Insights Into Their Respective Roles In Mitigating Energy Consumption And Identifying Their Applicability In Architectural Structures.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Parameter for comparison		Dynamic Shading	Double Skin Facade	Solar Active Facade	Green Facade
Adaptive Features		Adjustable louvres or blinds responding to sunlight intensity and angle, controlling interior light and heat gain	Two layers of glass, providing natural ventilation and insulation while allowing for improved environmental control	Integration of solar technologies like PV panels or thermal collectors for on-site renewable energy generation	Incorporation of vegetation on building exteriors, regulating temperature, humidity, and enhancing greeness
Application Purpose		Obstruction of sunlight, thermal insulation, security, summer comfort, cooling savings, security, heat retention	Solar gain and daylight control, reduce cooling needs, summer and winter comfort, glare reduction	Solar gain and daylight control, reduce cooling needs, summer comfort, glare reduction. To generate renewable energy	Solar gain and daylight control, reduce cooling needs, summer and winter comfort, glare reduction
Control		Manual, motorized or automated	Environmentally activated (passive)	Automated	Environmentally activated (passive)
Building Type		Residential and nonresidential (schools, hospital, offices, public buildings)	Office Buildings, commercial and other non-residential buildings	Residential and nonresidential buildings	All building typology
Energy saving	Lighting				
	Cooling				
	Ventilati on				

Figure 6. Facade Technology Comparison

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

4. Case Study

Numerous Buildings Have Embraced Innovative Technologies To Improve Energy Efficiency. This Section Employs A Case-Based Analysis Method To Showcase How The Discussed Climate-Adaptive Facade Technologies Are Applicable And Advantageous In Enhancing "Building Energy Performance." It Aims To Confirm The Positive Impact On Energy Efficiency And Illustrate Other Benefits Obtained From These Technologies.

4.1. Al Bahr Towers, Abu Dhabi

Facade Technology - Dynamic Shading Climate Type - Arid Desert Climate Relevance - Similar To Tropical Climate Regions, Arid Desert Climate Regions Experience Higher Temperatures And Considerable Sunlight.

Figure 7. Al Bahr Towers And Dynamic Facade

Facade Design And Material -

The Project Comprises Two Towers Featuring Dynamic Façades, Which Incorporate A Curtain Wall Cladding Layer Consisting Of Clear Weather-Tight Glass With A High-Performance Coating (Providing 40% Visible Light Transmission And 18% External Light Reflectance). A Distinct Dynamic Shading System, Inspired By The Traditional "Mashrabiyah," Is Integrated Into The Towers. This System Is Detached From The Cladding And Secured Through A Substructure Using Movement Joints.

The Dynamic Shading System Is Composed Of Triangulated Units, Resembling Origami Umbrellas, And Each Tower Is Equipped With 1049 Of These Shading Units. These Units Include Stainless Steel Supporting Frames, Aluminium Dynamic Frames, And Fibreglass Mesh Infill.

Functioning As Individual Shading Devices, The Triangular Units Unfold To Various Angles In Response To The Sun's Movement, Effectively Obstructing Direct Solar Radiation. The System Is Computer-Controlled To Adapt To Optimal Solar And Light Conditions. The 'Mashrabiya' Shading

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Devices Are Organized Into Sectors, Presenting 22 Diverse Variations In Geometries. These Shading Devices Operate Through Sun Tracking Software, Which Manages The Opening And Closing Sequence Based On The Sun's Angle.

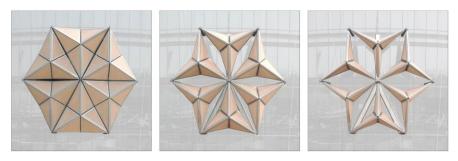


Figure 8. Facade Detail

Energy Efficiency And Climate Adaptability -

The Utilized Pattern Serves As A Mechanism For Achieving Environmental Control And Privacy, Encompassing Aspects Such As Natural Ventilation, Solar Control, And Glare Reduction. The Building Envelope Employed In This Project Covers All Sides Except The North Orientation, Resulting In A Significant 50% Energy Savings Specifically For Office Spaces And Up To 20% For The Entire Building. Additionally, The Design Leads To A 20% Reduction In Carbon Emissions, With A Noteworthy 50% Reduction Attributed To Office Spaces Alone.

Post Occupancy Evaluation - Regarding Thermal Comfort, A Significant Majority Of 86% Of The Occupants Reported Feeling Comfortable.

4.2. Securities Commission Building, Kuala Lumpur Facade Technology - Double Skin Facade Climate Type - Tropical Climate

Figure 9. Securities Commission Building

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Facade Design And Material -

In Malaysia, Buildings Are Exposed To Substantial Solar Radiation, Particularly On West-Facing Facades During The Afternoon, Leading To Issues Of Overheating And Increased Energy Consumption. As A Conventional Practice, Incorporating Fully Glazed Facades Is Not Typically Recommended. However, The Adoption Of A Double-Skin Facade (Dsf) Emerges As An Intriguing Solution To Mitigate Solar Heat Gain, Thereby Contributing To The Energy-Efficient Design Of Glazed Buildings While Simultaneously Enhancing Aesthetic Appeal. The Dsf System Comprises Three Key Elements: The Construction Of Two Layers Of Glazing Forming The Skin, The Transparency Of The Enclosing Surfaces, And The Airflow Within The Cavity.

It Features An Innovative Double-Skin Facade Construction Known As A Buffer System. Consisting Of Two Layers Of Glass With A Substantial 1.2-Meter Cavity, The External Layer Comprises 12mm Low-E Green Tinted Glass, While The Internal Layer Consists Of 8mm Thick Green Glass.

This Design Incorporates Horizontal Louvres And Vertical Blinds Within The Cavity, Contributing To Solar Control And Privacy Management. Fixed Louvred Panels Have Been Installed Along The Walkway To Offer Horizontal Solar Shading For The Offices. Solar Cell-Regulated Vertical Blinds Are Utilized To Shield Workstations From Direct Sunlight, Especially On The East And West Sides. Additionally, Cooled Air From The Office Is Recycled And Directed Into The Cavity Of The Double-Skin Facade At Ceiling Heights.

The Implementation Of A Natural Ventilation System Further Enhances The Building's Environment.

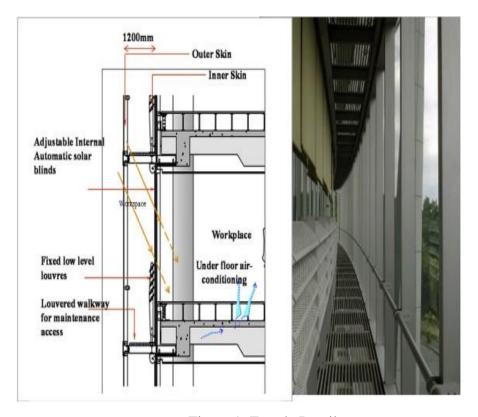


Figure 9. Facade Detail

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Energy Efficiency And Climate Adaptability -

When Direct Solar Radiation Interacts With The Double-Skin Facade (Dsf), A Nuanced Process Unfolds Wherein A Portion Of The Solar Energy Is Absorbed, Reflected, And Transmitted Into The Indoor Spaces. Notably, The Outer Skin Of This Scrutinized Dsf Is Crafted From Low-Emissivity (Low-E) Glass, Designed With High Reflectivity To Infrared Energy. The Incorporation Of

High-Quality Glass, Thermal Flue, Strategically Positioned Roof Overhangs, And The Integration Of Fixed Vertical And Horizontal Louvres, Along With Automatic Roller Blinds, Collectively Contribute To An Outstanding Overall Thermal Transfer Value (Ottv) Of 35w/Sq.M, Notably Surpassing The 45w/Sq.M. Benchmark Observed In Conventional Glass Buildings.

The Deliberate Use Of Low-E Glass On The External Layer Plays A Pivotal Role In Reflecting Infrared Wavelengths, Resulting In A Remarkable 40% Reduction In Solar Load Gain. This Calculated Approach To The Building's Envelope Design Yields Tangible Benefits, Allowing For Considerable Energy Savings Ranging From 15% To 16%. Such Measures Not Only Enhance The Building's Energy Efficiency But Also Underscore A Commitment To Sustainable Architectural Practices, Demonstrating How Thoughtful Design Choices Can Significantly Impact Thermal Performance And Contribute To The Broader Goals Of Energy Conservation.

Post Occupancy Evaluation -

The Outer Skin Of The Double-Skin Facade (Dsf) Predominantly Absorbs Solar Heat, Exerting Minimal Influence On The Inner Skin And, Consequently, The Internal Environment. This Effective Heat Absorption By The Outer Layer Results In Reduced Cooling Demands For The Building.

To Reduce Overheating Within The Dsf Cavity And Subsequent Interior Spaces, Safeguarding Against Direct Solar Radiation Is Advisable. Depending On The Glass Type Employed, Advanced Glazing Techniques Prove Instrumental In Impeding Heat Transfer Through The Glazed Surfaces Into Indoor Areas.

4.3. Ctrls Data Centre (Dc2), Mumbai Facade Technology - Solar Active Facade Climate Type - Tropical Climate

Facade Design And Material -

Ctrls Datacenters, A Prominent Indian Colocation And Infrastructure Management Service Provider, Has Strategically Incorporated Photovoltaic Systems On Every Side Of Its Mumbai-Based Data Centre, Dc2. These Panels Not Only Generate Electricity But Also Allow The Passage Of Natural Light.

In A Distinctive Departure From Conventional Glass Panels, The Building Envelope Has Been Enveloped With Solar Voltaic Panels, Serving The Dual Purpose Of Meeting Existing Electricity Demands And Generating Additional Power Units.

Notably, This Innovative Approach Capitalizes On The Expansive Surface Area Of The Building's Facade Covering An Area Of 12,263 Sq. Meters, Surpassing The Conventional Rooftop Installations In Terms Of Solar Voltaic Panel Coverage.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

This Forward-Thinking Initiative Aligns With Ctrls Datacenters' Commitment To Green Energy Practices, Demonstrating A Proactive Stance Towards Addressing Electricity Needs Through Renewable Sources. By Leveraging The Entire Building Envelope For Solar Energy Generation, Ctrls Datacenters Optimizes The Potential Of Its Infrastructure To Contribute Significantly To Its Power Requirements. The Decision To Integrate Solar Voltaic Panels Into The Facade Underscores The Company's Dedication To Environmental Responsibility, Underscoring The Role Of Data Centres In Adopting Innovative Solutions For A More Sustainable And Energy-Efficient Future. Executed By U-Solar Clean Energy As The Epc Installer, The Project Incorporates A Vertical Building-Integrated Solar Power (Bipv) System By Waaree.

Figure 10. Ctrls Dc2 Data Centre

Energy Efficiency And Climate Adaptability -

With A Formidable Maximum Power Capacity Of 24 Mw, Ctrls Datacenters' Facility In Mumbai Spans 132,000 Square Feet. The Installation Features A Robust 1.3 Mwp Solar Panel, Surpassing 1 Mw In Electricity Generation And Yielding 42,000 Units Annually.

This Initiative Is Aimed To Mitigate Co2 Emissions Equivalent To Nearly 7,000 Trees Annually, Underscoring Ctrls Datacenters' Commitment To Sustainable And Environmentally Conscious Practices.

Building-Integrated Photovoltaics (Bipvs) Are Often Preferred In Tropical Climates Due To Their Ability To Harness Solar Energy Effectively While Providing Shading Benefits. In Regions Characterized By High Temperatures And Abundant Sunlight, Bipv Systems Can Contribute Significantly To Energy Generation, Helping Meet The Elevated Demand For Cooling And Air Conditioning. The Integration Of Bipv Can Serve A Dual Purpose By Generating Electricity From Sunlight And Simultaneously Acting As A Shading Element, Reducing Solar Heat Gain Into The Building.

This Feature Is Particularly Advantageous In Tropical Climates Where Controlling Indoor Temperatures

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Is Crucial For Occupant Comfort And Energy Efficiency. Additionally, Bipv Systems Can Be Designed With Materials That Allow Diffused Natural Light To Enter, Providing Well-Lit Interiors While Minimizing The Reliance On Artificial Lighting. The Adaptability Of Bipv To Tropical Conditions Aligns With The Sustainable Design Goals Of Reducing Energy Consumption And Enhancing Thermal Comfort In Buildings Within These Climates.

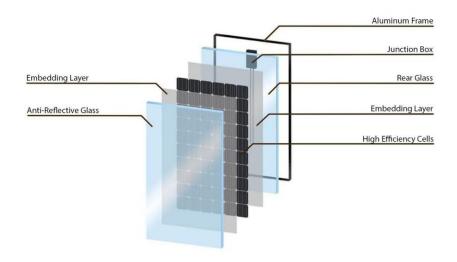


Figure 11. Bipvs Panel

Post Occupancy Evaluation -

Bipvs In Place Of Traditional Glass Windows Often Exhibit A Nuanced Impact On Occupant Comfort. One Notable Advantage Lies In The Ability Of Bipv Systems To Regulate Interior Temperatures Effectively. By Harnessing Solar Energy For Electricity Generation While Modifying Light Penetration, Bipv Panels Contribute To A More Controlled And Energy-Efficient Environment. This Dual Functionality Allows For A Reduction In Reliance On Conventional Heating, Ventilation, And Air Conditioning Systems, Fostering A Comfortable Indoor Climate.

However, Challenges May Arise In Terms Of Visual Aesthetics And Views. Bipv Materials May Not Provide The Same Level Of Clarity Or Unobstructed Views As Traditional Glass Windows.

4.4. Oasia Hotel Downtown, Singapore Facade Technology - Green Facade Climate Type - Tropical Climate Facade Design And Material -

The Facade Design Of Hotel Oasia Downtown, Situated In Singapore's Bustling Business District Near Chinatown, Is A Striking Testament To Architectural Innovation And A Departure From Traditional Urban Aesthetics.

The Unique Facade Features Red Aluminium Mesh Cladding, Enabling The Incorporation Of 21 Species Of Creepers, Plants, And Flowers. This Integration Not Only Enhances The Visual Appeal But Also Introduces Biodiversity To The Urban Area, Attracting Birds And Animals. Effectively Compensating For The Limited Greenery In The Surrounding Architecture, The Living Facade Contributes To A More

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Vibrant And Ecologically Balanced Cityscape.

One Of The Distinctive Features Of The Facade Is Its Vibrant Colour Palette, Showcasing Hues Of Pink, Red, Maroon, And Orange. This Unconventional Choice Adds A Visually Stimulating Contrast To The Surrounding Urban Environment Dominated By Neutral Tones Of Concrete And Glass. The Colours Not Only Contribute To The Hotel's Unique Identity But Also Reflect The Dynamic Energy Of The Locale.

In Addition To The Perforated Steel Mesh, The Facade Incorporates A "Living Cloak" Of Plants, Introducing A Vertical Green Element To The Design. This Innovative Use Of Vegetation Not Only Enhances The Aesthetic Appeal But Also Contributes To The Hotel's Eco-Friendly Initiatives, Providing Shade And Natural Insulation.

Figure 12. Oasia Hotel Downtown

Energy Efficiency And Climate Adaptability -

The Façade Of Hotel Oasia Downtown Is Ingeniously Designed With A Mesh That Serves As A Veil, Proficiently Absorbing Heat And Offering A Substantial 60 Per Cent Shade Coverage. This Strategic Use Of The Mesh Not Only Enhances The Aesthetic Appeal Of The Building But Also Plays A Pivotal Role In Regulating Solar Heat Gain, Contributing Significantly To The Overall Energy Efficiency Of The Structure.

Complementing The Mesh, The Integration Of Diverse Plant Species Into The Design Goes Beyond Aesthetics. The Plants Act As Natural Contributors To The Building's Thermal Dynamics By Providing Additional Shade, Absorbing Heat, And Acting As Air Purifiers. This Multi-Functional Role Of The Greenery Adds An Ecological Dimension To The Building, Contributing To A Healthier And More Sustainable Urban Environment.

The Vertical Greenery Incorporated Into The Building's Design Plays A Crucial Role In Reducing The Cooling Demand Of The Structure. By Providing Shade And Insulation, This Greenery Becomes An Active Participant In Lowering Overall Energy Consumption, Aligning With The Hotel's Commitment

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

To Sustainable And Eco-Friendly Practices.

Furthermore, The Thoughtful Facade Design, Featuring Vertical Greenery And Shading Elements, Extends Beyond Energy Efficiency To Impact The Thermal Comfort Of The Building's Occupants. By Mitigating The Heat Island Effect, A Common Concern In Urban Areas, And Creating A More Favourable Microclimate, The Design Promotes A Pleasant Environment Near The Building

Figure 12. Green Facade With Mesh And Plants

Post Occupancy Evaluation -

The Living Exterior Of Hotel Oasia Downtown Serves As A Multifaceted Asset, Acting As A Natural Air Purifier By Absorbing Pollutants And Carbon Dioxide While Emitting Oxygen Into The Surrounding Atmosphere. This Ecological Function Enhances Overall Air Quality And Fosters A Serene And Refreshing Ambience Amidst The Bustling Cityscape.

Beyond Its Environmental Contributions, The Greenery Integrated Into The Hotel's Design Aligns With Research Highlighting Its Stress-Reducing Qualities. Exposure To Natural Elements, Even In An Urban Setting, Has A Calming Effect, Promoting Mental Well-Being For Occupants. Additionally, The Strategic Placement Of Vegetation Provides Views Of Green Spaces, A Factor Linked To Increased Feelings Of Happiness And Reduced Mental Fatigue.

The Shading Effect Generated By The Lush Greenery Further Contributes To Occupant Comfort By Regulating Temperatures, Mitigating Heat-Related Stress, And Creating An Inviting And Tranquil Oasis Within The Dynamic Urban Environment Of Hotel Oasia Downtown.

4.5. Comparative Analysis

The Comparative Table Below, Lists The Case Studies Undertaken, Analyzing Their Characteristics Related To Energy Savings, Potential For Thermal Comfort And Occupants' Visual Comfort. This Understanding Is Necessary To Incorporate These Facade Technologies In Future Projects.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Parameters for studying		Al Bahr Towers	Securities Commission Building	CTRLS Data Centre (DC2)	Oasia Hotel Downtown
Facade Type		Dynamic Shading	Double Skin Facade	Solar Active Facade	Adaptive Green Facade
Potentials for Thermal Comfort		The moving elements of the adaptive facades contribute to maintaining a comfortable indoor environment by minimizing glare and heat gain.	The deliberate use of Low-E glass on the external layer helps reflect infrared wavelengths, resulting in a remarkable 40% reduction in solar load gain.	The shading effect of PV modules on the building's exterior helps mitigate direct exposure to sunlight, preventing excessive solar radiation from entering and thereby reducing solar heat gain.	The vertical plants helps in reducing the heat island effect and creating a more pleasant microclimate in the immediate vicinity of the building.
Occupant Visual Comfort		No	No	Yes	Yes
Energy Consumption		Reduced by 50%	Reduced by 15%	Relies only on BIPVs	Reduced by 24%
Parameters for studying		Al Bahr Towers	Securities Commission Building	CTRLS Data Centre (DC2)	Oasia Hotel Downtown
Energy saving	Lighting				
	Cooling				
	Ventilation				
Energy Consumption		Reduced by	Reduced by	Relies only on BIPVs	Reduced by 24%

Figure 13. Comparison Table On Case Studies

5. Inferences

The Comparative Analysis Of The Climate-Adaptive Facade Technologies And That Of The Case Studies Provides A Deeper Understanding Of The Comforts Offered By The Frontal Envelope Built.

- Climate-Adaptive Facades Have Proven To Be Energy Efficient And Provide Thermal Comfort In Buildings Located In Tropical Climates.
- In Dynamic Facades, Although The Motorised Movement Causes A Certain Amount Of Discomfort For The Occupants, It Is Necessary To Note That To Reduce Energy Consumption, Thereby Reducing The Carbon Footprint Of The Building.
- For An Actively Ventilated Double Skin Facade, This Technology Allows The Usage Of Two Glass Layers, Yet Provides Thermal Comfort To Its Occupants And Doesn't Disrupt The Views.
- Solar Active Facades Using Bipvs Allow The Production Of The Building's Renewable Energy And However Compromise The Views If All The Window Panels Are Switched With.
- Green Facades Work Best For Tropical Climates In Terms Of Providing Thermal Comfort From Both Heat And Humidity, However, Should Be Designed Such That It Doesnt Affect The Occupant's Views.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

6. Conclusion

In Conclusion, The Building Sector Stands As A Considerable Contributor To The Carbon Footprint, And The Ongoing Trend Of Urbanization Intensifies The Pressure As Cities Expand Vertically. The Imperative To Address Climate Change And Enhance Sustainability Within The Built Environment Has Never Been More Critical. As The Global Population Gravitates Towards Urban Centres, The Demand For High-Rise Structures Is Inevitable. However, This Shift Comes With Heightened Energy Consumption And Environmental Repercussions. The Adoption Of Climate-Adaptive Facades Emerges As A Crucial Intervention In Mitigating These Challenges.

Climate-Adaptive Facades Play A Pivotal Role In Elevating Internal Environmental Conditions Within Buildings. By Integrating Intelligent Design And Innovative Technologies, These Facades Offer A Means To Regulate Temperature, Enhance Natural Lighting, And Optimize Energy Efficiency. The Dynamic Nature Of These Facades, Responding To External Climatic Variations, Aligns Seamlessly With The Evolving Demands Of Sustainable Architecture.

Crucially, Climate-Adaptive Facades Contribute To A Reduction In Energy Consumption, Offering A Tangible Solution To The Environmental Impact Of The Building Sector. As Cities Continue To Evolve, Embracing These Facades Becomes Not Just An Option But A Necessity For Fostering A Harmonious Balance Between Urbanization And Ecological Responsibility. The Imperative To Create Resilient And Sustainable Urban Spaces Underscores The Significance Of Adopting Climate-Adaptive Facades, Providing A Pathway Towards A Future Where The Built Environment Is Synonymous With Environmental Stewardship And Energy Efficiency. Through Thoughtful Integration And Widespread Adoption, Climate-Adaptive Facades Stand As Catalysts For Positive Change, Reshaping The Trajectory Of Urban Development Towards A More Sustainable And Resilient Future.

7. Acknowledgement

I Would Like To Express My Special Thanks To Our Mentor Ar. Vikram Kholi, For His Endless Guidance And Support. Additionally, I Would Like To Thank Ar. Naina Singh And Ar. Sandeep Arora For Their Input In Shaping The Paper.

References

- 1. Kamal, M. A. (2020). Technological Interventions In Building Facade System: Energy Efficiency And Environmental Sustainability. Architecture Research, 10(2), 45-53.
- 2. Attia, S., Bertrand, S., Cuchet, M., Yang, S., & Tabadkani, A.(2022). Comparison Of Thermal Energy Saving Potential And Overheating Risk Of Four Adaptive Façade Technologies In Office Buildings. Sustainability, 14(10), 6106.
- 3. Lin, H., Xiao, Y., Musso, F., & Lu, Y. (2019). Green Façade Effects On Thermal Environment In Transitional Space: Field Measurement Studies And Computational Fluid Dynamics Simulations. Sustainability, 11(20), 5691.
- 4. Lassandro, P., & Di Turi, S. (2017). Façade Retrofitting: From Energy Efficiency To Climate Change Mitigation. Energy Procedia, 140, 182-193.
- 5. Attia, S., Lioure, R., & Declaude, Q. (2020). Future Trends And Main Concepts Of Adaptive

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

- Facade Systems. Energy Science & Engineering, 8(9), 3255-3272.
- 6. LING, C. S., AHMAD, M. H., & OSSEN, D. R. (2007). THE EFFECT OF GEOMETRIC SHAPE AND BUILDING ORIENTATION ON MINIMISING SOLAR INSOLATION ON HIGH-RISE BUILDINGS IN HOT HUMID CLIMATE.
- 7. JOURNAL OF CONSTRUCTION IN DEVELOPING COUNTRIES, 12(1), 27-38.
- 8. Khairdzir, N., & Taib, N. (2020). Properties And Design Of Double Skin Facade In The Tropics. Maj-Malaysia Architectural Journal, 2(2), 65-72.
- 9. Majid, A. H. A., & Ghazali, A. (2021, November). Hybrid
- 10. System Strategy On Double Skin Façade To Optimize Thermal Performance On Research Building. In Iop Conference Series: Earth And Environmental Science (Vol. 881, No. 1, P. 012048). Iop Publishing.
- 11. SANI, S. S., & ALIBABA, H. Z. INTEGRATION OF PHOTOVOLTAICS IN MODERN BUILDING FACADE: A COMPARISON OF PHOTOVOLTAIC INTEGRATED FAÇADE.
- 12. 403 Forbidden. (N.D.).
- 13. Https://Ornatesolar.Com/Blog/Bipv-The-Future-Of-Solar-Energ Y-Generation-Is-Here
- 14. Admin, W. (2020, January 3). Rowan Murray Of Ronstan Tensile Architecture: Second-Skin Facades. Ronstan Tensile Architecture.
- 15. Https://Www.Ronstantensilearch.Com/Facade-Architecture-Au Stralia/
- 16. Al Bahar Towers. (2020, October 8). Wikiarquitectura. Retrieved December 13, 2023, From Https://En.Wikiarquitectura.Com/Building/Al-Bahar-Towers/
- 17. Double-Skin Facade. (2014, June 5). Sadafadamarchitect. Https://Sadafadamarchitect.Wordpress.Com/2014/05/02/Doubl E-Skin-Facade/
- 18. Double-Skin Facades: Characteristics And Challenges For An Advanced Building Skin. (2019, January 11). Glassonweb.Com. Https://Www.Glassonweb.Com/Article/Double-Skin-Facades-Cha Racteristics-And-Challenges-Advanced-Building-Skin
- 19. EVALUATION OF ADAPTIVE FACADES: THE CASE STUDY OF AL BAHR
- 20. Towers In The Uae. (2017, November 10). Glassonweb.Com.
- 21. Https://Www.Glassonweb.Com/Article/Evaluation-Adaptive-Fac Ades-Case-Study-Al-Bahr-Towers-Uae
- 22. Green Facade Effects On Thermal Environment In Transitional Space: Field Measurement Studies And Computational Fluid Dynamics Simulations. (2019, October 15). Mdpi. Https://Www.Mdpi.Com/2071-1050/11/20/5691
- 23. Here, Y. N. (2016, November 22). Securities Commission Building. Esci Ksp.
- 24. HTTPS://Www.ESCI-KSP.ORG/ARCHIVES/PROJECT/SECURITIES-COMMISSI ON-BUILDING#:~:TEXT=FT.%20among%20the%20innovative%2
- 25. 0AND%20ENERGY%2DEFFICIENT%20FEATURES.DOUBLE%2DGLAZE
- 26. D%20THERMAL%20FLUE%20FACADE%2C%20ATR
- 27. Li, H., Zhao, Y., Sützl, B., Kubilay, A., & Carmeliet, J. (2022). Impact Of Green Walls On Ventilation And Heat Removal From Street Canyons: Coupling Of Thermal And Aerodynamic Resistance. Building And Environment, 214, 108945.
- 28. Les Tours Al-Bahr. (N.D.). Sapi.Paris-Lavillette.Archi.Fr. Https://Sapi.Paris-Lavillette.Archi.Fr/Ctid924/?P=12397
- 29. Securities Commission Most Energy Efficient New Building In Asean Media Releases. (N.D.). Securities Commission Malaysia.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

- 30. Https://Www.Sc.Com.My/Resources/Media/Media-Release/Securit Ies-Commission-Most-Energy-Efficient-New-Building-In-Asean
- 31. Shahin, H. (2020, January 3). Al Bahr Towers | Aedas. Arch2o.Com. Https://Www.Arch2o.Com/Al-Bahr-Towers-Aedas/
- 32. Upadhyay, A. (2020, July 11). India's Largest Building Integrated Vertical Solar System & The Road Ahead.
- 33. CLEANTECHNICA.
- 34. Https://Cleantechnica.Com/2020/07/11/Indias-Largest-Building
- 35. -Integrated-Vertical-Solar-System-The-Road-Ahead/
- 36. Alkhatib, H., Lemarchand, P., Norton, B., & O'sullivan, D.
- 37. T. J. (2021). Deployment And Control Of Adaptive Building Facades For Energy Generation, Thermal Insulation, Ventilation And Daylighting: A Review. Applied Thermal Engineering, 185, 116331.
- 38. NAGY, Z., SVETOZAREVIC, B., JAYATHISSA, P., BEGLE, M., HOFER, J., LYDON, G., ... & SCHLUETER, A. (2016). THE ADAPTIVE SOLAR FACADE: FROM CONCEPT TO PROTOTYPES. FRONT. ARCHIT. RES. 5, 143–156.
- 39. NASIR, O., & KAMAL, M. A. AN APPRAISAL OF DOUBLE SKIN FACADE IN BUILDING DESIGN: ARCHITECTURAL INTERVENTION AND SUSTAINABILITY.
- 40. Al-Kodmany, K. (2023). Greenery-Covered Tall Buildings: A Review. Buildings, 13(9), 2362.
- 41. Attention Required! (N.D.). Attention Required! | Cloudflare.
- 42. Https://Worldlandscapearchitect.Com/Oasia-Downtown-Hotel- A-Singapore-Building-Wrapped-In-A-Living-Cloak/?V=C86ee0d9 D7ed
- 43. CTRLS BUILDS WORLD'S 1ST SOLAR POWERED RATED-4 DATACENTER Building Powered By Integrated Vertical Solar System From Waaree. (N.D.). THE LEADING SOLAR MAGAZINE IN INDIA.
- 44. Https://Www.Eqmagpro.Com/Ctrls-Builds-Worlds-1st-Solar-Po Wered-Rated-4-Datacenter-Building-Powered-By-Integrated-V Ertical-Solar-System-From-Waaree/
- 45. Natasha Kwok I Designboom. (2018, April 25). Woha's Oasia Hotel Conceived As A Living Green Tower In Downtown Singapore. Designboom | Architecture & Design Magazine. Https://Www.Designboom.Com/Architecture/Woha-Oasia-Hotel- Downtown-Singapore-Living-Tower-12-07-2016/