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Abstract:

The rapid evolution of smart manufacturing necessitates innovative approaches for real-time monitoring,
control, and optimization of production processes. Artificial Intelligence (Al) and Digital Twins (DT) have
emerged as transformative technologies capable of enhancing operational efficiency, predictive
maintenance, quality assurance, and adaptive process control. This paper presents a comprehensive
framework for integrating Al with digital twin systems to enable real-time manufacturing control. The
study reviews current methodologies, architectures, and use cases, highlights the key capabilities and
benefits of Al-enabled digital twins, and discusses practical challenges and implementation
considerations. Additionally, schematic representations of system architecture, data flow, and closed-loop
control are provided to guide practitioners and researchers. The findings suggest that the integration of Al
and digital twins significantly enhances manufacturing responsiveness, flexibility, and overall
performance while offering a foundation for future manufacturing systems.

Keywords: Artificial Intelligence, Digital Twin, Real-Time Manufacturing Control, Smart
Manufacturing, Predictive Maintenance, Process Optimization.

I. INTRODUCTION

Modern manufacturing environments are characterized by increasing complexity, rapid product cycles,
and high variability in production demand. Traditional control methods, reliant on static schedules and
manual intervention, are insufficient to handle dynamic disturbances, equipment degradation, or variable
material properties. To address these challenges, advanced technologies such as Artificial Intelligence
(AI) and Digital Twins (DT) are being deployed to enable adaptive, predictive, and real-time control of
manufacturing processes [1]-[3].

A digital twin is a virtual replica of a physical system that synchronizes with real-time data to model,
simulate, and predict operational states [4]. When coupled with Al algorithms—including machine
learning, deep learning, and reinforcement learning—digital twins evolve from passive representations
into active decision-making systems capable of optimizing performance, detecting anomalies, and
enabling autonomous control [5], [6].

The purpose of this paper is to provide a comprehensive overview of Al-enabled digital twins in
manufacturing, emphasizing real-time control applications. The contributions of this paper include:

1. Reviewing current Al and digital twin technologies in manufacturing.
2. Presenting a layered architecture for real-time control.
3. Highlighting use cases and potential benefits.
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4. Discussing practical challenges and providing recommendations for implementation.

I1. BACKGROUND

A. Digital Twins in Manufacturing

Digital twins in manufacturing serve as virtual counterparts of machines, production lines, or entire
factories. By continuously ingesting sensor data, production logs, and environmental variables, a digital
twin reflects the real-time operational state of its physical counterpart [7]. Beyond monitoring, digital
twins enable simulation, scenario analysis, and predictive evaluation of process changes, thereby
supporting decision-making and process optimization [8].

Applications include workflow optimization, equipment performance analysis, virtual commissioning,
and production planning. For example, a factory digital twin can simulate machine idle times, bottlenecks,
and material flow to identify and resolve inefficiencies [9].

B. Artificial Intelligence in Manufacturing

Al encompasses computational techniques that allow systems to learn from data, identify patterns, make
predictions, and execute decisions [10]. In manufacturing, Al applications span:

. Predictive maintenance: forecasting machine failure based on historical and sensor data.

. Quality control: detecting defects in real time through computer vision and statistical learning.

. Process optimization: dynamically adjusting parameters and apply mean shift to process
parameters, such as feed rate, temperature, or machine speed.

. Scheduling and resource allocation: adapting production schedules based on real-time

constraints [11], [12].

C. Synergy of AI and Digital Twins

While digital twins provide a high-fidelity model of the manufacturing system, Al equips the twin with
predictive and prescriptive capabilities. Integration allows for:

1. Real-time decision-making: Al algorithms analyze live twin data to recommend or execute
corrective actions.

2. Predictive analytics: Forecasting equipment degradation, process deviations, or quality defects.
3. Process optimization: Evaluating multiple scenarios virtually before applying optimal solutions.
4. Autonomous control : Closed-loop adaptation of system parameters with minimal human

intervention [13].

Architecture for real time manufacturing control
A robust Al-enabled digital twin system for real-time control typically follows a layered architecture

Al-enabined Digital Twin Arch

CONTROL/
Al AND ANALYTICS LAYER DECISION
LAYER

DIGITAL TWIN LAYER

PHYSICAL LAYER

[ DATA ACQUISITION LAYER

Feedback loop

1)
Fig. 1: Al-enabled Digital Twin Architecture for Real-Time Manufacturing Control.

Physical Layer: The Physical Layer is the bottom-most layer in industrial and IoT architectures. Its
primary function is to interact directly with the physical environment—measuring conditions, performing
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actions, and enabling machines to execute manufacturing processes. Physical layer examples include
sensors, actuators, robots, torque tools, joining tools and various machine tools generating real-time
operational data.

Data Acquisition Layer: The Data Acquisition Layer (DAL) is responsible for collecting, conditioning,
and preparing raw data from the Physical Layer before it’s transmitted to higher-level systems. Its main
purpose is to ensure that data is accurate, relevant, and usable for real-time monitoring, control, and
simulation. Adding SCADA (Supervisory Control and Data Acquisition) to the Data Acquisition Layer
brings significant benefits because SCADA acts as both a data collection system and a supervisory control
interface for industrial processes. SCADA systems can also be leveraged for generating human machine
interfaces.

Digital Twin Layer: The Digital Twin Layer sits above the Data Acquisition Layer, receiving real-time
data from sensors, machines, and SCADA systems, and using it to mirror the current state of the physical
system. Maintains a virtual model of the physical system, updating its state based on incoming data.
Simulations, scenario testing, and predictive modeling are performed here.

Al and Analytics Layer: Implements machine learning, deep learning, or reinforcement learning models
to predict system states, optimize process parameters, and detect anomalies. This layer in modern
architecture transforms raw and processed operational data into actionable intelligence. By integrating
with digital twins, it allows virtual “what-if” simulations to evaluate process changes without impacting
physical operations. Overall, this layer empowers factories to move from reactive operations to smart,
self-aware, and data-driven manufacturing ecosystems, enhancing productivity, reducing downtime, and
supporting continuous improvement.

Control/Decision Layer: Serves as the bridge between analytical insights and physical action in industrial
systems and digital twin architectures. It takes the predictions, optimizations, and anomaly detections
generated by the Al and Analytics Layer and translates them into actionable commands for machines or
actionable recommendations for human operators. For example, it can automatically fine-tune robotic arm
movements, adjust conveyor speeds, or modify torque settings to prevent defects, while simultaneously
alerting operators to critical issues or suggested interventions.

Feedback Loop: Updated physical system data is continuously fed back into the twin, completing the
real-time control cycle [14], [15]. This continuous synchronization allows the Al and Analytics Layer to
detect deviations, predict potential issues, and optimize processes based on the most recent conditions.
The Control/Decision Layer then uses these insights to adjust machine operations or provide operator
recommendations, which in turn influence the physical system. As updated data flows back into the twin,
the loop repeats, creating a closed-loop system that enables ongoing monitoring, proactive maintenance,
dynamic optimization, and rapid response to changing conditions. This cycle ensures that both the physical
and digital systems remain aligned, fostering resilient, efficient, and self-correcting operations in real time.

III. IMPLEMENTATION FRAMEWORK

Deploying an Al-enabled digital twin for real-time manufacturing control requires a structured approach
encompassing objectives, data infrastructure, model development, integration, and continuous
improvement.

Define Objectives and Use-Cases

Defining measurable goals ensures that the digital twin delivers actionable insights [16]. Some examples
of these measurable goals are indicated in Table 1
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Table 1: Goals and measurable metrics

Goal / Objective Metric Target / Measurement unit

examples
Cycle Time <Y minutes per cycle
Increase Production Efficiency
Machine Utilization > 85% uptime

Mean Time Between Failures

(MTBF) > A hours

Reduce Downtime

Mean Time to Repair (MTTR) < B minutes

First Pass Yield (FPY) >95%

Improve Product Quality hin 1+ X0 :
Process Variability Within + X% of setpoint/ Cpk target
of 1.33 or greater

Resource Usage Resource Utilization > 85% efficient
Predictive Accuracy > 90% correct predictions
. o .
Enhance Predictive Maintenance |Anomaly Detection Rate > 95% detected anomalies

Remaining Useful Life (RUL)

Accurate within £X days
Forecast

Data Infrastructure

The Data Infrastructure forms the backbone of any digital twin and Al analytics ecosystem, ensuring that
data flows seamlessly, reliably, and securely across all layers of the system. A robust data pipeline begins
at the shop floor with IoT-enabled sensors, actuators, and programmable logic controllers (PLCs) that
continuously capture real-time operational data. This data is then transmitted through edge computing
devices, factory network or other options, performing initial filtering, aggregation, and preprocessing close
to the source to reduce latency and network load. The infrastructure must also integrate with higher-level
enterprise systems such as Manufacturing Execution Systems (MES) and Enterprise Resource Planning
(ERP) platforms to connect operational data with production planning, inventory, and business processes.
To ensure reliability and traceability, all data must be accurate, time-stamped, and assigned a unique
transaction identifier, enabling synchronization between physical and digital environments [17].
Furthermore, preprocessing—such as noise removal, normalization, and formatting—is essential to make
the data ready for Al and machine learning models, which depend on clean, structured, and context-rich
inputs. Together, these elements create a scalable and intelligent data infrastructure that supports real-time
decision-making and continuous optimization in modern smart factories.

Digital Twin Development

The digital twin must replicate the physical system including machine dynamics, material flow,
environmental interactions, and stochastic events. Hybrid simulation models (discrete-event and
continuous) are often employed. Crucially, the digital twin’s reliability depends on model validation and
continuous calibration [18]. Validation ensures that the simulated behavior aligns closely with real-world
data collected from sensors and IoT devices, while calibration involves ongoing fine-tuning of parameters
as conditions change in the physical system. Through this iterative process, the digital twin remains a
reasonably accurate, real-time representation of the physical system, capable of supporting predictive
analytics, optimization, and scenario testing for smarter, data-driven decision-making. However, it’s
important to recognize that some degree of inaccuracy is inevitable, as the model is built on assumptions,
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simplifications, and estimated parameters that cannot capture every detail of real-world variability.
Despite these limitations, a well-calibrated digital twin provides the most practical and insightful
approximation available, offering valuable guidance for operational improvement, risk assessment, and
strategic planning.

Al Model Integration

Al Model Integration is a crucial phase in enhancing the intelligence and adaptability of a digital twin. In
this stage, various artificial intelligence and machine learning models are embedded directly into the twin’s
architecture to transform it from a passive simulation tool into an active, decision-support and self-
optimizing system. These models operate on data continuously streamed from the physical system,
allowing the twin to learn, predict, and adapt in real time.

Different categories of Al models serve distinct purposes: supervised learning models are trained on
labeled historical data to predict system states such as equipment failures, product quality outcomes, or
energy usage patterns; unsupervised learning models detect hidden patterns, correlations, and anomalies
within large datasets without predefined labels, which is particularly useful for identifying unusual
operating conditions or sensor drift; and reinforcement learning algorithms learn optimal control policies
through trial-and-error interaction with the simulated environment, helping to fine-tune machine
parameters, scheduling, or resource allocation strategies. Additionally, optimization algorithms—such as
genetic algorithms or gradient-based methods—help determine the most efficient operating
configurations, balancing productivity, cost, and quality objectives.

Once integrated, these Al models enable the digital twin to not only mirror the physical system but also
anticipate future states, recommend or automatically implement corrective actions, and continuously
improve performance. To maintain accuracy and relevance, continuous retraining and model updating are
essential, allowing the AI to adapt to changing operational conditions, new sensor data, and system
modifications. While the models may not always perfectly capture complex real-world dynamics, their
integration significantly enhances the twin’s analytical and prescriptive capabilities, making it a powerful
tool for predictive maintenance, process optimization, and intelligent decision-making in dynamic
industrial environments [19].

Control and Feedback Loops

In practice, control execution can occur in two modes [20]:

. Autonomous control, where the system automatically adjusts machine parameters (e.g., speed,
torque, temperature, or flow rate) through direct integration with Programmable Logic Controllers (PLCs)
or Distributed Control Systems (DCS). This mode is typically used for high-speed or repetitive processes
where rapid response is essential and operator intervention could introduce delays.

. Operator-assisted control, where Al-generated recommendations are presented through Human-
Machine Interfaces (HMI) or Supervisory Control and Data Acquisition (SCADA) systems. In this case,
the operator reviews, validates, and authorizes actions—ideal for complex or safety-critical operations that
require human oversight.

Feedback loop ensures that the results of these actions are continuously monitored and evaluated. Real-
time sensor data is sent back to the digital twin and Al models as explained in Fig 2. This live feedback
allows the system to assess whether control actions resulted in intended outcomes and, if necessary, apply
adjustments to maintain optimal performance. For example, if a robotic arm deviates from its expected
trajectory, the twin detects this discrepancy, the AI model predicts the corrective control sequence, and
the PLC implements micro-adjustments to restore precision.
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Fig 2: Adaptive control through continuous feedback and Al insights.

Pilot Testing and Scaling

Pilot Testing and Scaling is a critical phase in the deployment of digital twin and Al analytics systems,
ensuring that the technology delivers measurable value before full-scale implementation. It provides a
structured, low-risk approach to validate technical feasibility, performance accuracy, and operational
impact within a controlled environment—typically on a single production line, machine, or process
unit.[21]. In Pilot testing, beyond metrics discussed in Table 1., also consider use of metrics from table 2.

Table 2: Pilot testing validation metrics

Predictive and AI Model Performance Metrics

Metric

Purpose

Typical Limit / Target

Prediction Accuracy

Verifies the reliability of Al-based forecasts
(e.g., failure, demand).

>90% accuracy

Anomgly Detection|Measures how accurate;ly the Al identifies > 95% precision, > 90% recall
Precision/Recall faults or abnormal conditions.
False Alarm Rate Assesses the usability of Al alerts for < 5% false positives

operators.

Model Latency (Decision
Delay)

Ensures timely responses to real-time data.

< 500 ms for edge or on-prem
inference

Model Drift / Retraining
Interval

Evaluates model stability and data evolution
over time.

Drift < 2-3% between retrain
cycles

Digital Twin Model Fidelity Metrics

Simulation Accuracy
(Deviation vs. Real Data)

Assesses how closely the twin mirrors real
system behavior.

+3-5% deviation

Data Latency (Physical —

Measures synchronization quality between

<1 second for critical loops

Digital Update) real and virtual systems.

Model Calibration . . Monthly or after significant
Ensures alignment over operational cycles.

Frequency process change

Twin System Uptime

Verifies twin system availability and stability.

> 99% uptime during pilot

I[JSAT25049606
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Human and Integration Metrics

Gauges  human-machine  collaboration

Operator Acceptance Rate > 80% positive feedback

success.
System Integration|Assesses connection with MES, ERP, and|> 95% successful API or
Success legacy control systems. protocol integration
Training Completion and|Ensures workforce readiness for scaled|100% completion with > 90%
Competence deployment. competency assessment score
Safety Compliance|Validates operational safety and system

Incidents reliability. Zero incidents during pilot phase

IV. USE CASES

A. Predictive maintenance

By analyzing sensor data (vibration, temperature, and load), Al models integrated with digital twins can
predict failures before they occur. This reduces unplanned downtime and extends equipment life [22]. As
an example - in an automotive assembly line, robotic welding cells are critical for assembling car body
panels. Unplanned robot failures can halt production, increase costs, and disrupt schedules.

By leveraging Al and digital twins, manufacturers can predict and prevent these failures, optimizing both
robot performance and maintenance planning. Each robot cell is represented by a digital twin that receives
real-time sensor data, including motor currents, joint positions, torque, vibration, and temperature. Al
analyzes historical and live data to forecast issues such as motor fatigue, joint misalignment, or gripper
wear, while simulations in the digital twin allow engineers to test different production loads and adjust
operating parameters to reduce wear. Maintenance alerts are integrated with the Manufacturing Execution
System to minimize production disruption. This approach will potentially reduce unplanned downtime—
from 12 to 2—3 hours per month per cell—increases production throughput by 5-8%, lowers maintenance
costs by 25-35%, and extends the lifespan of the consumables in robotic equipment.

B. Dynamic process optimization

Real-time adjustment of machine parameters (speed, feed rate, temperature) based on twin simulations
allows for optimization under varying conditions, improving throughput and minimizing energy
consumption [23]. An illustration of this approach would be: In an automotive assembly plant, the final
paint shop applies multiple layers of primer, base coat, and clear coat to car bodies. Variations in ambient
temperature, humidity, and paint viscosity can affect drying time, coating thickness, and overall quality.
By implementing dynamic process optimization using Al and digital twins, the plant can adjust machine
parameters in real time to maintain consistent quality and efficiency.

Each paint booth has a digital twin that models the robotic sprayers, conveyor speed, oven temperature,
and environmental conditions. Real-time sensor data—including paint viscosity, airflow, temperature, and
conveyor speed—feeds into the twin. Al analyzes this data and runs simulations to predict how changes
in one parameter affect coating uniformity and energy use. Based on the results, the system automatically
adjusts robot spray speed, nozzle flow rate, oven temperature, and conveyor speed to optimize coverage,
reduce overspray, and minimize energy consumption.

This approach enables adaptive, real-time process optimization, ensuring high-quality finishes under
varying conditions while improving throughput and reducing energy costs.

C. Quality Control

Digital twins combined with computer vision and Al enable early detection of defects, reducing scrap
rates and improving product quality [24]. In the general assembly area of an automotive plant, precise gap
and flush measurements of doors, hoods, and panels are critical for vehicle quality and customer
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perception. Variations in panel alignment often originate from upstream processes, such as body line fit
or door subassembly installation. By combining digital twins, Al, and computer vision, the factory can
detect misalignments early and correlate them to their source.

High-resolution cameras and laser scanners capture gap and flush measurements in real time as doors are
installed. The data feeds into a digital twin of the vehicle body, which models all panels and tolerances.
Al algorithms analyze the measurements and detect deviations from nominal specifications, identifying
patterns that indicate issues originating upstream, such as misaligned body frames or incorrectly
positioned hinge assemblies. The system then generates actionable feedback for the body line, allowing
operators to correct frame alignment or adjust fixture settings before the next vehicle reaches the general
assembly line.

This integrated approach reduces scrap rates, minimizes rework, and ensures consistent vehicle quality.
For example, gap and flush deviations can be reduced by 30-50%, while correlated feedback to upstream
processes prevents recurring assembly defects, improving overall line efficiency and product fit-and-
finish.

D. Real time scheduling and flow control

Al-augmented twins simulate production flows, identify bottlenecks, and optimize scheduling
dynamically. This improves lead times and maximizes resource utilization [25]. In an automotive engine
manufacturing plant, multiple production lines operate simultaneously, including cylinder machining,
assembly, and testing stations. Delays or imbalances in one station can create bottlenecks, leading to
longer lead times and underutilized machines. By implementing Al-augmented digital twins, the plant can
simulate production flows in real time and dynamically adjust scheduling to optimize throughput.

With Al and Digital twin systems, the system dynamically reallocates resources, adjusts job sequences,
and modifies conveyor speeds or batch sizes to prevent bottlenecks. For example, if a cylinder boring
station slows down, the twin can prioritize downstream assembly jobs from another line or temporarily
reroute parts to an alternate machining cell.

This approach ensures continuous optimization of production flow, improves machine utilization, and
shortens lead times. In practice, engine plants using Al-augmented twins have reported a 10—15% increase
in throughput, a 20% reduction in machine idle time, and more predictable delivery schedules.

E. Workforce training and augmented operations

Virtual twins combined with AR/VR can train operators on complex systems. Al-generated scenarios
prepare staff for rare events and support augmented decision-making [26]. This can be explained by an
example of low volume battery assembly line. The operators must handle complex tasks such as high-
voltage battery pack assembly, module testing, and safety-critical procedures. Mistakes or delays can
compromise quality, safety, and production efficiency. By combining virtual twins with AR/VR and Al,
the plant can provide advanced training and operational support.

Each battery assembly workstation has a virtual twin that mirrors the real environment, including tools,
components, and process steps. Using AR/VR headsets, operators can interact with the virtual
environment to practice assembly procedures, understand component tolerances, and troubleshoot issues
without risk to actual hardware. Al generates a wide range of scenarios, including rare or emergency
events—such as module misalignment, voltage spikes, or unexpected part defects—allowing staff to train
for situations they might rarely encounter on the real line.

During live operations, AR overlays can guide operators in real time, showing step-by-step instructions,
highlighting potential errors, and suggesting corrective actions based on the AI’s analysis of sensor data
and the digital twin. This combination of training and augmented decision-making improves operator skill,
reduces human errors, and ensures safety and efficiency in complex processes.
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V. BENEFITS
Integrating Al with digital twins in manufacturing provides:
e Increased Equipment Uptime: Predictive maintenance reduces downtime and improves Overall
Equipment Effectiveness (OEE) [27].
e Higher Throughput and Efficiency: Real-time optimization and dynamic scheduling reduce idle
and blocked times.
e Improved Quality: Early defect detection lowers scrap and rework.
e Reduced Operational Costs: Optimized resource utilization and minimized energy consumption.
e Enhanced Flexibility: Rapid adaptation to product changes, material variability, and demand
fluctuations.
e Better Decision-Making: Al insights combined with twin visualization improve situational
awareness for operators [28].

VI. CHALLENGES AND CONSIDERATIONS

Despite the advantages, several challenges must be addressed:

A. Data Quality and Readiness

High-quality, accurate and timely data is the foundation of both digital twins and Al models. Incomplete,
noisy, or inconsistent sensor data can compromise the fidelity of the twin and reduce the accuracy of Al
predictions. Additionally, most of use cases would be driven by correlation of data, there is a possibility
of prediction accuracy being lower than expected and findings must be interpreted accordingly. For
example, missing vibration data from a robotic arm could lead to undetected mechanical wear, resulting
in unplanned downtime. Ensuring proper sensor calibration, data cleansing, and real-time validation is
critical to maintaining system reliability [29].

B. Twin model fidelity

Creating an accurate representation of complex machines, production lines, or processes requires detailed
modeling of physics, material properties, and operational dynamics. Overly simplified models may fail to
capture critical failure modes, while highly detailed models demand continuous calibration to reflect wear,
environmental changes, and process variations. For instance, a digital twin of an EV battery assembly line
must account for variability in battery module tolerances, thermal behavior, and assembly ergonomics
amongst other things, to remain useful [30].

C. Al model lifecycle

Al models are susceptible to concept drift, where the statistical relationships they learned from historical
data no longer hold due to changes in operations, equipment, or materials. Without continuous monitoring,
retraining, and validation, predictive maintenance or process optimization recommendations may become
inaccurate. Establishing robust retraining pipelines and automated performance monitoring is essential for
long-term Al reliability.[31].

D. Integration and interoperability

Digital twins must interface seamlessly with existing infrastructure, including legacy PLCs, MES/ERP
systems, and SCADA platforms. Differences in protocols, data formats, or update frequencies can hinder
real-time synchronization and limit the actionable insights available. Integration requires careful planning,
middleware solutions, and possibly upgrading older equipment to support real-time connectivity [32].
Additionally, information security challenges and lack of resourcing can delay the process further.

E. Safety and governance

Automated or Al-driven decisions must incorporate fail-safes, emergency stops, and human oversight to
prevent unsafe operations [33]. For example, in robotic assembly or battery handling, an Al
recommendation to increase production speed must not compromise operator safety or exceed mechanical
limits. Establishing governance frameworks, safety thresholds, and audit trails is critical for regulatory
compliance and operational confidence.
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F. Scalability and cost

Deploying digital twins with Al capabilities requires significant investment in sensors, edge devices,
computational resources, and software development. Scaling from a pilot line to full production can be
expensive and complex [34]. Clear business cases, ROI analyses, and phased deployment strategies are
necessary to justify costs and ensure measurable value. Additionally, ongoing maintenance, updates, and
staff training add to long-term operational expenses.

VII. FUTURE TRENDS

A. Cognitive digital twins

Cognitive digital twins go beyond traditional simulations by integrating graph learning, knowledge graphs,
and advanced Al to enable more complex decision-making. These twins can understand relationships
between components, processes, and systems, allowing predictive and prescriptive analytics at a higher
level. For example, a cognitive twin of an EV assembly line could analyze interactions between battery
installation, robotic welding, and paint curing to suggest optimal production adjustments in real time [35].
B. Generative Al for twin design

Generative Al is increasingly being used to automate the creation and optimization of digital twin models.
Instead of manually defining physics, parameters, and process rules, Al can generate high-fidelity twin
models by learning from historical data, sensor streams, and simulation outcomes. This accelerates
deployment, improves accuracy, and enables rapid adaptation to new machinery or product variants [36].
C. Extended reality (XR) Integration

The integration of AR and VR with digital twins allows immersive training, real-time monitoring, and
human-in-the-loop operations. Operators can practice assembly, maintenance, or emergency procedures
in virtual environments, while managers can visualize production line status in real time. XR also supports
remote collaboration, where engineers across locations can interact with the same virtual twin
simultaneously.[37].

D. Autonomous Manufacturing

Future manufacturing systems aim to become fully adaptive, with digital twins and Al enabling self-
optimizing lines that require minimal human intervention and may result in lights-off factories with
minimal oversight. Machines could automatically adjust speeds, sequencing, and maintenance schedules
in response to real-time production conditions, improving throughput, reducing waste, and maintaining
quality consistently.

E. Edge Analytics

Deploying Al inference and twin simulations at the edge—near the machinery rather than in centralized
cloud servers—reduces latency and enables real-time decision-making. For example, predictive
maintenance alerts or process optimization recommendations can be delivered instantly, which is critical
for high-speed assembly lines or safety-critical operations like battery handling. [38].

F. Factory metaverse

The concept of a factory metaverse involves networked digital twins representing entire factories and
extended supply chains. This enables collaborative scenario simulations, production planning, and remote
monitoring across multiple sites. Companies can simulate disruptions, optimize logistics, and train staff
in a fully virtual yet synchronized representation of the physical ecosystem.[39].

G. Industrial AI- A New age manufacturing ecosystem synergy

The real objective in our view of an Industrial Al platform would be to converge the physical and cognitive
abilities that result in enhancement of manufacturing value chain. Fig. 3 elaborates on framework to use
Industrial Al ecosystem
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Fig. 3: Framework for new age manufacturing ecosystem

VIII. CONCLUSION

Al-enabled digital twins offer a powerful approach to real-time manufacturing control, bridging the gap
between physical operations and intelligent decision-making. Their integration supports predictive
maintenance, dynamic process optimization, quality assurance, and adaptive scheduling. While challenges
exist in data management, model maintenance, and system integration, a well-structured implementation
framework can unlock significant operational benefits. As technology evolves, Al and digital twins will
form the foundation of next-generation autonomous, flexible, and resilient smart manufacturing systems.
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