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Abstract: 

The rapid evolution of smart manufacturing necessitates innovative approaches for real-time monitoring, 

control, and optimization of production processes. Artificial Intelligence (AI) and Digital Twins (DT) have 

emerged as transformative technologies capable of enhancing operational efficiency, predictive 

maintenance, quality assurance, and adaptive process control. This paper presents a comprehensive 

framework for integrating AI with digital twin systems to enable real-time manufacturing control. The 

study reviews current methodologies, architectures, and use cases, highlights the key capabilities and 

benefits of AI-enabled digital twins, and discusses practical challenges and implementation 

considerations. Additionally, schematic representations of system architecture, data flow, and closed-loop 

control are provided to guide practitioners and researchers. The findings suggest that the integration of AI 

and digital twins significantly enhances manufacturing responsiveness, flexibility, and overall 

performance while offering a foundation for future manufacturing systems. 
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I. INTRODUCTION 

Modern manufacturing environments are characterized by increasing complexity, rapid product cycles, 

and high variability in production demand. Traditional control methods, reliant on static schedules and 

manual intervention, are insufficient to handle dynamic disturbances, equipment degradation, or variable 

material properties. To address these challenges, advanced technologies such as Artificial Intelligence 

(AI) and Digital Twins (DT) are being deployed to enable adaptive, predictive, and real-time control of 

manufacturing processes [1]–[3]. 

A digital twin is a virtual replica of a physical system that synchronizes with real-time data to model, 

simulate, and predict operational states [4]. When coupled with AI algorithms—including machine 

learning, deep learning, and reinforcement learning—digital twins evolve from passive representations 

into active decision-making systems capable of optimizing performance, detecting anomalies, and 

enabling autonomous control [5], [6]. 

The purpose of this paper is to provide a comprehensive overview of AI-enabled digital twins in 

manufacturing, emphasizing real-time control applications. The contributions of this paper include: 

1. Reviewing current AI and digital twin technologies in manufacturing. 

2. Presenting a layered architecture for real-time control. 

3. Highlighting use cases and potential benefits. 
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4. Discussing practical challenges and providing recommendations for implementation. 

 

II. BACKGROUND 

A. Digital Twins in Manufacturing 

Digital twins in manufacturing serve as virtual counterparts of machines, production lines, or entire 

factories. By continuously ingesting sensor data, production logs, and environmental variables, a digital 

twin reflects the real-time operational state of its physical counterpart [7]. Beyond monitoring, digital 

twins enable simulation, scenario analysis, and predictive evaluation of process changes, thereby 

supporting decision-making and process optimization [8]. 

Applications include workflow optimization, equipment performance analysis, virtual commissioning, 

and production planning. For example, a factory digital twin can simulate machine idle times, bottlenecks, 

and material flow to identify and resolve inefficiencies [9]. 

B.    Artificial Intelligence in Manufacturing 

AI encompasses computational techniques that allow systems to learn from data, identify patterns, make 

predictions, and execute decisions [10]. In manufacturing, AI applications span: 

• Predictive maintenance: forecasting machine failure based on historical and sensor data. 

• Quality control: detecting defects in real time through computer vision and statistical learning. 

• Process optimization: dynamically adjusting parameters and apply mean shift to process 

parameters, such as feed rate, temperature, or machine speed. 

• Scheduling and resource allocation: adapting production schedules based on real-time 

constraints [11], [12]. 

C.     Synergy of AI and Digital Twins 

While digital twins provide a high-fidelity model of the manufacturing system, AI equips the twin with 

predictive and prescriptive capabilities. Integration allows for: 

1. Real-time decision-making: AI algorithms analyze live twin data to recommend or execute 

corrective actions. 

2. Predictive analytics: Forecasting equipment degradation, process deviations, or quality defects. 

3. Process optimization: Evaluating multiple scenarios virtually before applying optimal solutions. 

4. Autonomous control : Closed-loop adaptation of system parameters with minimal human 

intervention [13]. 

 

Architecture for real time manufacturing control 

A robust AI-enabled digital twin system for real-time control typically follows a layered architecture  

1)  

Fig. 1: AI-enabled Digital Twin Architecture for Real-Time Manufacturing Control. 

 

Physical Layer: The Physical Layer is the bottom-most layer in industrial and IoT architectures. Its 

primary function is to interact directly with the physical environment—measuring conditions, performing 
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actions, and enabling machines to execute manufacturing processes. Physical layer examples include 

sensors, actuators, robots, torque tools, joining tools and various machine tools generating real-time 

operational data. 

Data Acquisition Layer: The Data Acquisition Layer (DAL) is responsible for collecting, conditioning, 

and preparing raw data from the Physical Layer before it’s transmitted to higher-level systems. Its main 

purpose is to ensure that data is accurate, relevant, and usable for real-time monitoring, control, and 

simulation. Adding SCADA (Supervisory Control and Data Acquisition) to the Data Acquisition Layer 

brings significant benefits because SCADA acts as both a data collection system and a supervisory control 

interface for industrial processes. SCADA systems can also be leveraged for generating human machine 

interfaces.  

Digital Twin Layer: The Digital Twin Layer sits above the Data Acquisition Layer, receiving real-time 

data from sensors, machines, and SCADA systems, and using it to mirror the current state of the physical 

system. Maintains a virtual model of the physical system, updating its state based on incoming data. 

Simulations, scenario testing, and predictive modeling are performed here.  

AI and Analytics Layer: Implements machine learning, deep learning, or reinforcement learning models 

to predict system states, optimize process parameters, and detect anomalies. This layer in modern 

architecture transforms raw and processed operational data into actionable intelligence. By integrating 

with digital twins, it allows virtual “what-if” simulations to evaluate process changes without impacting 

physical operations. Overall, this layer empowers factories to move from reactive operations to smart, 

self-aware, and data-driven manufacturing ecosystems, enhancing productivity, reducing downtime, and 

supporting continuous improvement. 

Control/Decision Layer: Serves as the bridge between analytical insights and physical action in industrial 

systems and digital twin architectures. It takes the predictions, optimizations, and anomaly detections 

generated by the AI and Analytics Layer and translates them into actionable commands for machines or 

actionable recommendations for human operators. For example, it can automatically fine-tune robotic arm 

movements, adjust conveyor speeds, or modify torque settings to prevent defects, while simultaneously 

alerting operators to critical issues or suggested interventions.  

Feedback Loop: Updated physical system data is continuously fed back into the twin, completing the 

real-time control cycle [14], [15]. This continuous synchronization allows the AI and Analytics Layer to 

detect deviations, predict potential issues, and optimize processes based on the most recent conditions. 

The Control/Decision Layer then uses these insights to adjust machine operations or provide operator 

recommendations, which in turn influence the physical system. As updated data flows back into the twin, 

the loop repeats, creating a closed-loop system that enables ongoing monitoring, proactive maintenance, 

dynamic optimization, and rapid response to changing conditions. This cycle ensures that both the physical 

and digital systems remain aligned, fostering resilient, efficient, and self-correcting operations in real time. 

 

III. IMPLEMENTATION FRAMEWORK 

Deploying an AI-enabled digital twin for real-time manufacturing control requires a structured approach 

encompassing objectives, data infrastructure, model development, integration, and continuous 

improvement. 

Define Objectives and Use-Cases 

Defining measurable goals ensures that the digital twin delivers actionable insights [16]. Some examples 

of these measurable goals are indicated in Table 1 
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Table 1: Goals and measurable metrics 

Goal / Objective Metric 
Target / Measurement unit 

examples 

Increase Production Efficiency 
Cycle Time < Y minutes per cycle 

Machine Utilization > 85% uptime 

Reduce Downtime 

Mean Time Between Failures 

(MTBF) 
> A hours 

Mean Time to Repair (MTTR) < B minutes 

Improve Product Quality 

First Pass Yield (FPY) > 95% 

Process Variability 
Within ± X% of setpoint/ Cpk target 

of 1.33 or greater 

Resource Usage Resource Utilization > 85% efficient 

Enhance Predictive Maintenance 

Predictive Accuracy > 90% correct predictions 

Anomaly Detection Rate > 95% detected anomalies 

Remaining Useful Life (RUL) 

Forecast 
Accurate within ±X days 

 

Data Infrastructure 

The Data Infrastructure forms the backbone of any digital twin and AI analytics ecosystem, ensuring that 

data flows seamlessly, reliably, and securely across all layers of the system. A robust data pipeline begins 

at the shop floor with IoT-enabled sensors, actuators, and programmable logic controllers (PLCs) that 

continuously capture real-time operational data. This data is then transmitted through edge computing 

devices, factory network or other options, performing initial filtering, aggregation, and preprocessing close 

to the source to reduce latency and network load. The infrastructure must also integrate with higher-level 

enterprise systems such as Manufacturing Execution Systems (MES) and Enterprise Resource Planning 

(ERP) platforms to connect operational data with production planning, inventory, and business processes. 

To ensure reliability and traceability, all data must be accurate, time-stamped, and assigned a unique 

transaction identifier, enabling synchronization between physical and digital environments [17]. 

Furthermore, preprocessing—such as noise removal, normalization, and formatting—is essential to make 

the data ready for AI and machine learning models, which depend on clean, structured, and context-rich 

inputs. Together, these elements create a scalable and intelligent data infrastructure that supports real-time 

decision-making and continuous optimization in modern smart factories. 

Digital Twin Development 

The digital twin must replicate the physical system including machine dynamics, material flow, 

environmental interactions, and stochastic events. Hybrid simulation models (discrete-event and 

continuous) are often employed. Crucially, the digital twin’s reliability depends on model validation and 

continuous calibration  [18]. Validation ensures that the simulated behavior aligns closely with real-world 

data collected from sensors and IoT devices, while calibration involves ongoing fine-tuning of parameters 

as conditions change in the physical system. Through this iterative process, the digital twin remains a 

reasonably accurate, real-time representation of the physical system, capable of supporting predictive 

analytics, optimization, and scenario testing for smarter, data-driven decision-making. However, it’s 

important to recognize that some degree of inaccuracy is inevitable, as the model is built on assumptions, 
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simplifications, and estimated parameters that cannot capture every detail of real-world variability. 

Despite these limitations, a well-calibrated digital twin provides the most practical and insightful 

approximation available, offering valuable guidance for operational improvement, risk assessment, and 

strategic planning. 

 

AI Model Integration 

AI Model Integration is a crucial phase in enhancing the intelligence and adaptability of a digital twin. In 

this stage, various artificial intelligence and machine learning models are embedded directly into the twin’s 

architecture to transform it from a passive simulation tool into an active, decision-support and self-

optimizing system. These models operate on data continuously streamed from the physical system, 

allowing the twin to learn, predict, and adapt in real time. 

Different categories of AI models serve distinct purposes: supervised learning models are trained on 

labeled historical data to predict system states such as equipment failures, product quality outcomes, or 

energy usage patterns; unsupervised learning models detect hidden patterns, correlations, and anomalies 

within large datasets without predefined labels, which is particularly useful for identifying unusual 

operating conditions or sensor drift; and reinforcement learning algorithms learn optimal control policies 

through trial-and-error interaction with the simulated environment, helping to fine-tune machine 

parameters, scheduling, or resource allocation strategies. Additionally, optimization algorithms—such as 

genetic algorithms or gradient-based methods—help determine the most efficient operating 

configurations, balancing productivity, cost, and quality objectives. 

Once integrated, these AI models enable the digital twin to not only mirror the physical system but also 

anticipate future states, recommend or automatically implement corrective actions, and continuously 

improve performance. To maintain accuracy and relevance, continuous retraining and model updating are 

essential, allowing the AI to adapt to changing operational conditions, new sensor data, and system 

modifications. While the models may not always perfectly capture complex real-world dynamics, their 

integration significantly enhances the twin’s analytical and prescriptive capabilities, making it a powerful 

tool for predictive maintenance, process optimization, and intelligent decision-making in dynamic 

industrial environments [19]. 

 

Control and Feedback Loops 

In practice, control execution can occur in two modes [20]: 

• Autonomous control, where the system automatically adjusts machine parameters (e.g., speed, 

torque, temperature, or flow rate) through direct integration with Programmable Logic Controllers (PLCs) 

or Distributed Control Systems (DCS). This mode is typically used for high-speed or repetitive processes 

where rapid response is essential and operator intervention could introduce delays. 

• Operator-assisted control, where AI-generated recommendations are presented through Human-

Machine Interfaces (HMI) or Supervisory Control and Data Acquisition (SCADA) systems. In this case, 

the operator reviews, validates, and authorizes actions—ideal for complex or safety-critical operations that 

require human oversight. 

Feedback loop ensures that the results of these actions are continuously monitored and evaluated. Real-

time sensor data is sent back to the digital twin and AI models as explained in Fig 2. This live feedback 

allows the system to assess whether control actions resulted in intended outcomes and, if necessary, apply 

adjustments to maintain optimal performance. For example, if a robotic arm deviates from its expected 

trajectory, the twin detects this discrepancy, the AI model predicts the corrective control sequence, and 

the PLC implements micro-adjustments to restore precision. 
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Fig 2: Adaptive control through continuous feedback and AI insights. 

 

Pilot Testing and Scaling 

Pilot Testing and Scaling is a critical phase in the deployment of digital twin and AI analytics systems, 

ensuring that the technology delivers measurable value before full-scale implementation. It provides a 

structured, low-risk approach to validate technical feasibility, performance accuracy, and operational 

impact within a controlled environment—typically on a single production line, machine, or process 

unit.[21]. In Pilot testing, beyond metrics discussed in Table 1., also consider use of metrics from table 2. 

 

Table 2: Pilot testing validation metrics 

Predictive and AI Model Performance Metrics 

Metric Purpose Typical Limit / Target 

Prediction Accuracy 
Verifies the reliability of AI-based forecasts 

(e.g., failure, demand). 
≥ 90% accuracy 

Anomaly Detection 

Precision/Recall 

Measures how accurately the AI identifies 

faults or abnormal conditions. 
≥ 95% precision, ≥ 90% recall 

False Alarm Rate 
Assesses the usability of AI alerts for 

operators. 
< 5% false positives 

Model Latency (Decision 

Delay) 
Ensures timely responses to real-time data. 

< 500 ms for edge or on-prem 

inference 

Model Drift / Retraining 

Interval 

Evaluates model stability and data evolution 

over time. 

Drift < 2–3% between retrain 

cycles 

Digital Twin Model Fidelity Metrics 

Simulation Accuracy 

(Deviation vs. Real Data) 

Assesses how closely the twin mirrors real 

system behavior. 
±3–5% deviation 

Data Latency (Physical → 

Digital Update) 

Measures synchronization quality between 

real and virtual systems. 
< 1 second for critical loops 

Model Calibration 

Frequency 
Ensures alignment over operational cycles. 

Monthly or after significant 

process change 

Twin System Uptime Verifies twin system availability and stability. > 99% uptime during pilot 
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Human and Integration Metrics 

Operator Acceptance Rate 
Gauges human-machine collaboration 

success. 
≥ 80% positive feedback 

System Integration 

Success 

Assesses connection with MES, ERP, and 

legacy control systems. 

≥ 95% successful API or 

protocol integration 

Training Completion and 

Competence 

Ensures workforce readiness for scaled 

deployment. 

100% completion with ≥ 90% 

competency assessment score 

Safety Compliance 

Incidents 

Validates operational safety and system 

reliability. 
Zero incidents during pilot phase 

 

IV. USE CASES 

A. Predictive maintenance 

By analyzing sensor data (vibration, temperature, and load), AI models integrated with digital twins can 

predict failures before they occur. This reduces unplanned downtime and extends equipment life [22]. As 

an example - in an automotive assembly line, robotic welding cells are critical for assembling car body 

panels. Unplanned robot failures can halt production, increase costs, and disrupt schedules.  

By leveraging AI and digital twins, manufacturers can predict and prevent these failures, optimizing both 

robot performance and maintenance planning. Each robot cell is represented by a digital twin that receives 

real-time sensor data, including motor currents, joint positions, torque, vibration, and temperature. AI 

analyzes historical and live data to forecast issues such as motor fatigue, joint misalignment, or gripper 

wear, while simulations in the digital twin allow engineers to test different production loads and adjust 

operating parameters to reduce wear. Maintenance alerts are integrated with the Manufacturing Execution 

System to minimize production disruption. This approach will potentially reduce unplanned downtime—

from 12 to 2–3 hours per month per cell—increases production throughput by 5–8%, lowers maintenance 

costs by 25–35%, and extends the lifespan of the consumables in robotic equipment. 

 

B. Dynamic process optimization  

Real-time adjustment of machine parameters (speed, feed rate, temperature) based on twin simulations 

allows for optimization under varying conditions, improving throughput and minimizing energy 

consumption [23]. An illustration of this approach would be: In an automotive assembly plant, the final 

paint shop applies multiple layers of primer, base coat, and clear coat to car bodies. Variations in ambient 

temperature, humidity, and paint viscosity can affect drying time, coating thickness, and overall quality. 

By implementing dynamic process optimization using AI and digital twins, the plant can adjust machine 

parameters in real time to maintain consistent quality and efficiency. 

Each paint booth has a digital twin that models the robotic sprayers, conveyor speed, oven temperature, 

and environmental conditions. Real-time sensor data—including paint viscosity, airflow, temperature, and 

conveyor speed—feeds into the twin. AI analyzes this data and runs simulations to predict how changes 

in one parameter affect coating uniformity and energy use. Based on the results, the system automatically 

adjusts robot spray speed, nozzle flow rate, oven temperature, and conveyor speed to optimize coverage, 

reduce overspray, and minimize energy consumption. 

This approach enables adaptive, real-time process optimization, ensuring high-quality finishes under 

varying conditions while improving throughput and reducing energy costs.  

 

C. Quality Control 

Digital twins combined with computer vision and AI enable early detection of defects, reducing scrap 

rates and improving product quality [24]. In the general assembly area of an automotive plant, precise gap 

and flush measurements of doors, hoods, and panels are critical for vehicle quality and customer 
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perception. Variations in panel alignment often originate from upstream processes, such as body line fit 

or door subassembly installation. By combining digital twins, AI, and computer vision, the factory can 

detect misalignments early and correlate them to their source. 

High-resolution cameras and laser scanners capture gap and flush measurements in real time as doors are 

installed. The data feeds into a digital twin of the vehicle body, which models all panels and tolerances. 

AI algorithms analyze the measurements and detect deviations from nominal specifications, identifying 

patterns that indicate issues originating upstream, such as misaligned body frames or incorrectly 

positioned hinge assemblies. The system then generates actionable feedback for the body line, allowing 

operators to correct frame alignment or adjust fixture settings before the next vehicle reaches the general 

assembly line. 

This integrated approach reduces scrap rates, minimizes rework, and ensures consistent vehicle quality. 

For example, gap and flush deviations can be reduced by 30–50%, while correlated feedback to upstream 

processes prevents recurring assembly defects, improving overall line efficiency and product fit-and-

finish. 

 

D. Real time scheduling and flow control 

AI-augmented twins simulate production flows, identify bottlenecks, and optimize scheduling 

dynamically. This improves lead times and maximizes resource utilization [25]. In an automotive engine 

manufacturing plant, multiple production lines operate simultaneously, including cylinder machining, 

assembly, and testing stations. Delays or imbalances in one station can create bottlenecks, leading to 

longer lead times and underutilized machines. By implementing AI-augmented digital twins, the plant can 

simulate production flows in real time and dynamically adjust scheduling to optimize throughput. 

With AI and Digital twin systems, the system dynamically reallocates resources, adjusts job sequences, 

and modifies conveyor speeds or batch sizes to prevent bottlenecks. For example, if a cylinder boring 

station slows down, the twin can prioritize downstream assembly jobs from another line or temporarily 

reroute parts to an alternate machining cell. 

This approach ensures continuous optimization of production flow, improves machine utilization, and 

shortens lead times. In practice, engine plants using AI-augmented twins have reported a 10–15% increase 

in throughput, a 20% reduction in machine idle time, and more predictable delivery schedules. 

 

E. Workforce training and augmented operations 

Virtual twins combined with AR/VR can train operators on complex systems. AI-generated scenarios 

prepare staff for rare events and support augmented decision-making [26]. This can be explained by an 

example of low volume battery assembly line. The operators must handle complex tasks such as high-

voltage battery pack assembly, module testing, and safety-critical procedures. Mistakes or delays can 

compromise quality, safety, and production efficiency. By combining virtual twins with AR/VR and AI, 

the plant can provide advanced training and operational support. 

Each battery assembly workstation has a virtual twin that mirrors the real environment, including tools, 

components, and process steps. Using AR/VR headsets, operators can interact with the virtual 

environment to practice assembly procedures, understand component tolerances, and troubleshoot issues 

without risk to actual hardware. AI generates a wide range of scenarios, including rare or emergency 

events—such as module misalignment, voltage spikes, or unexpected part defects—allowing staff to train 

for situations they might rarely encounter on the real line. 

During live operations, AR overlays can guide operators in real time, showing step-by-step instructions, 

highlighting potential errors, and suggesting corrective actions based on the AI’s analysis of sensor data 

and the digital twin. This combination of training and augmented decision-making improves operator skill, 

reduces human errors, and ensures safety and efficiency in complex processes. 
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V. BENEFITS 

Integrating AI with digital twins in manufacturing provides: 

• Increased Equipment Uptime: Predictive maintenance reduces downtime and improves Overall 

Equipment Effectiveness (OEE) [27]. 

• Higher Throughput and Efficiency: Real-time optimization and dynamic scheduling reduce idle 

and blocked times. 

• Improved Quality: Early defect detection lowers scrap and rework. 

• Reduced Operational Costs: Optimized resource utilization and minimized energy consumption. 

• Enhanced Flexibility: Rapid adaptation to product changes, material variability, and demand 

fluctuations. 

• Better Decision-Making: AI insights combined with twin visualization improve situational 

awareness for operators [28]. 

 

VI. CHALLENGES AND CONSIDERATIONS 

Despite the advantages, several challenges must be addressed: 

A. Data Quality and Readiness 

High-quality, accurate and timely data is the foundation of both digital twins and AI models. Incomplete, 

noisy, or inconsistent sensor data can compromise the fidelity of the twin and reduce the accuracy of AI 

predictions. Additionally, most of use cases would be driven by correlation of data, there is a possibility 

of prediction accuracy being lower than expected and findings must be interpreted accordingly. For 

example, missing vibration data from a robotic arm could lead to undetected mechanical wear, resulting 

in unplanned downtime. Ensuring proper sensor calibration, data cleansing, and real-time validation is 

critical to maintaining system reliability [29]. 

B. Twin model fidelity 

Creating an accurate representation of complex machines, production lines, or processes requires detailed 

modeling of physics, material properties, and operational dynamics. Overly simplified models may fail to 

capture critical failure modes, while highly detailed models demand continuous calibration to reflect wear, 

environmental changes, and process variations. For instance, a digital twin of an EV battery assembly line 

must account for variability in battery module tolerances, thermal behavior, and assembly ergonomics 

amongst other things, to remain useful [30]. 

C. AI model lifecycle 

AI models are susceptible to concept drift, where the statistical relationships they learned from historical 

data no longer hold due to changes in operations, equipment, or materials. Without continuous monitoring, 

retraining, and validation, predictive maintenance or process optimization recommendations may become 

inaccurate. Establishing robust retraining pipelines and automated performance monitoring is essential for 

long-term AI reliability.[31]. 

D. Integration and interoperability  

Digital twins must interface seamlessly with existing infrastructure, including legacy PLCs, MES/ERP 

systems, and SCADA platforms. Differences in protocols, data formats, or update frequencies can hinder 

real-time synchronization and limit the actionable insights available. Integration requires careful planning, 

middleware solutions, and possibly upgrading older equipment to support real-time connectivity [32]. 

Additionally, information security challenges and lack of resourcing can delay the process further.  

E. Safety and governance  

Automated or AI-driven decisions must incorporate fail-safes, emergency stops, and human oversight to 

prevent unsafe operations [33]. For example, in robotic assembly or battery handling, an AI 

recommendation to increase production speed must not compromise operator safety or exceed mechanical 

limits. Establishing governance frameworks, safety thresholds, and audit trails is critical for regulatory 

compliance and operational confidence. 
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F. Scalability and cost 

Deploying digital twins with AI capabilities requires significant investment in sensors, edge devices, 

computational resources, and software development. Scaling from a pilot line to full production can be 

expensive and complex [34]. Clear business cases, ROI analyses, and phased deployment strategies are 

necessary to justify costs and ensure measurable value. Additionally, ongoing maintenance, updates, and 

staff training add to long-term operational expenses. 

 

VII. FUTURE TRENDS 

A. Cognitive digital twins 

Cognitive digital twins go beyond traditional simulations by integrating graph learning, knowledge graphs, 

and advanced AI to enable more complex decision-making. These twins can understand relationships 

between components, processes, and systems, allowing predictive and prescriptive analytics at a higher 

level. For example, a cognitive twin of an EV assembly line could analyze interactions between battery 

installation, robotic welding, and paint curing to suggest optimal production adjustments in real time [35]. 

B. Generative AI for twin design 

Generative AI is increasingly being used to automate the creation and optimization of digital twin models. 

Instead of manually defining physics, parameters, and process rules, AI can generate high-fidelity twin 

models by learning from historical data, sensor streams, and simulation outcomes. This accelerates 

deployment, improves accuracy, and enables rapid adaptation to new machinery or product variants [36]. 

C. Extended reality (XR) Integration 

The integration of AR and VR with digital twins allows immersive training, real-time monitoring, and 

human-in-the-loop operations. Operators can practice assembly, maintenance, or emergency procedures 

in virtual environments, while managers can visualize production line status in real time. XR also supports 

remote collaboration, where engineers across locations can interact with the same virtual twin 

simultaneously.[37]. 

D. Autonomous Manufacturing 

Future manufacturing systems aim to become fully adaptive, with digital twins and AI enabling self-

optimizing lines that require minimal human intervention and may result in lights-off factories with 

minimal oversight. Machines could automatically adjust speeds, sequencing, and maintenance schedules 

in response to real-time production conditions, improving throughput, reducing waste, and maintaining 

quality consistently. 

E. Edge Analytics 

Deploying AI inference and twin simulations at the edge—near the machinery rather than in centralized 

cloud servers—reduces latency and enables real-time decision-making. For example, predictive 

maintenance alerts or process optimization recommendations can be delivered instantly, which is critical 

for high-speed assembly lines or safety-critical operations like battery handling. [38]. 

F. Factory metaverse 

The concept of a factory metaverse involves networked digital twins representing entire factories and 

extended supply chains. This enables collaborative scenario simulations, production planning, and remote 

monitoring across multiple sites. Companies can simulate disruptions, optimize logistics, and train staff 

in a fully virtual yet synchronized representation of the physical ecosystem.[39]. 

G. Industrial AI- A New age manufacturing ecosystem synergy 

The real objective in our view of an Industrial AI platform would be to converge the physical and cognitive 

abilities that result in enhancement of manufacturing value chain. Fig. 3 elaborates on framework to use 

Industrial AI ecosystem 
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Fig. 3: Framework for new age manufacturing ecosystem 

 

VIII. CONCLUSION 

AI-enabled digital twins offer a powerful approach to real-time manufacturing control, bridging the gap 

between physical operations and intelligent decision-making. Their integration supports predictive 

maintenance, dynamic process optimization, quality assurance, and adaptive scheduling. While challenges 

exist in data management, model maintenance, and system integration, a well-structured implementation 

framework can unlock significant operational benefits. As technology evolves, AI and digital twins will 

form the foundation of next-generation autonomous, flexible, and resilient smart manufacturing systems. 
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