IJSAT

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

A=

Integrating URL Protection with Web
Application Firewalls (WAFs)

John Komarthi

San Jose, CA
john.komarthi@gmail.com

Abstract

Modern-day web applications are facing an array of continuously evolving URL-based threats, including
malicious payloads hidden in query strings and automated bots that probe for vulnerable endpoints. In this
whitepaper, we will explore the necessity of URL protection in today's web environments and how Web
Application Firewalls (WAFs) can be effectively integrated. We will discuss the capabilities of WAF,
rule-based filtering, anomaly detection, request normalization, and how these capabilities will complement
the URL protection techniques (URL rewriting, filtering, obfuscation, encoding normalization, and real-
time monitoring). Real-world use cases from leading providers such as Cloudflare, AWS, Imperva, etc.,
will be examined to illustrate the implementation strategies in enterprise, hybrid, and cloud native
architectures. We compare the methods like URL rewriting vs. filtering and evaluate the trade-offs with
the top solutions, highlighting how a combined approach can mitigate the attacks without compromising
on performance and flexibility. Through blending the research insights and the best technical practices,
this paper provides a comprehensive understanding of how to integrate URL protection with WAFs and
secure web applications at scale.

Keywords: URL protection, WAF, API security, URL rewriting, URL encoding, DDoS mitigation, rate
limiting, URL filtering, DevSecOps, virtual patching, Cloudflare, AWS WAF, Imperva, threat detection,
security compliance.

INTRODUCTION

In today’s tech landscape, URLs have become more than mere addresses; they are conduits for user
navigation, data exchange, and also attack vectors. Each HTTP request to the web application contains a
URL that can be manipulated maliciously. URL protection is the set of strategies and technologies that
are used to safeguard the integrity and maintain the confidentiality of the URLs in web applications. These
include stopping the attackers from tampering with the URL parameters, injecting malicious content, and
accessing unauthorized paths. As the applications grow in complexity, the challenges of protecting the
URLSs have intensified. Web Application Firewalls (WAFs) operate as gatekeepers that inspect the web
traffic and block attacks even before they hit the application backend. WAFs have become the front line
of defense for web applications, they enforce security policies at the HTTP level and filter out malicious
patterns such as SQL injection strings, cross-site scripting payloads, etc. WAF can be tuned to examine
the URL path and query the components of requests, making them natural allies for URL protection
measures. Organizations can create a layered defense by integrating URL protection mechanisms with
WAF. They not only block generic attacks but also enforce application-specific URL access rules and
transformations.

Need for URL protection in modern web environments:

The evolution of the web has expanded the attack surface, which is exposed via URLs. The URLs are
mapped to countless resources, REST API endpoints, microservices calls, user interface pages, etc. Each
URL carries query parameters and path segments that influence application behavior. The attackers

IJSAT25049608 Volume 16, Issue 4, October-December 2025 1



https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

routinely exploit the attack surface by sending requests to manipulate how the application interprets the
URL. For example, a malicious threat actor may attempt a path traversal attack by including “../” sequence
in the URL to break out of intended directories, or supply SQL commands in the query parameter to test
for SQL injection vulnerabilities. Businesses generally expose functionality through web APIs and
through user-facing URLs; the URL inputs have to be continuously validated and protected. Automated
scanners and bots are used to constantly crawl websites to look for known weaknesses through the URLSs.
The recent web attacks have revealed that many exploits begin with probing multiple IRL patterns, for
example, accessing the admin or backup paths, adding file extensions such as .bak or ~ to find backups,
or appending common filename parameters [1]. Cloudflare has noticed that robots are scanning websites
for vulnerabilities and are ready to exploit any unprotected URL or parameter [2]. There is a high volume
of malicious and errant URL requests in the web traffic, and it necessitates automated defense that can
scale. Relying on developers to sanitize and restrict the URLs in application code is error-prone and hard
to maintain. Another driving factor of URL protection is the exposure of sensitive data via URLs. It is not
uncommon for the applications to include tokens, query parameters, or session IDs with sensitive
information in the URL. If the sensitive data is not handled carefully, this can leak through referrer headers,
logs, or browser history. Modern-day privacy regulations and security best practices need to minimize
such exposure, especially in cases where the information must reside in the URLs, extra protection like
encryption and one-time tokens is needed to prevent leakage or misuse. URL protection mechanisms also
help enforce these practices by rewriting and filtering out the sensitive parts of the URLs.

Cloud-native and microservice architectures increase the problem, in a microservices environment, dozens
of services expose endpoints (URLs) both externally and internally. Keeping track of allowable URL
patterns and interactions becomes complex, and an insecure direct object reference (IDOR) or an open
endpoint that is unintentionally exposed can lead to extreme breaches. Enterprises are adopting zero-trust
principles internally and externally, and each URL has to be verified and authorized [3]. Traditional
network firewalls are blind to this, and a WAF with URL awareness is required to implement such fine-
grained policies. Performance and the availability considerations intersect with the security. Large-scale
apps see a huge volume of URL requests. An attacker can exploit this by sending a flood of requests to
specify heavy URLs like search queries to degrade the service, a layer-7 DDoS attack. Rate limiting the
URLs is essential to maintain the availability. For example, AWS mentions that publicly accessible APIs
are subject to threats like HTTP floods and brute force attempts, which can be mitigated by WAFs
analyzing and blocking malicious URL requests [4]. The modern web environments demand URL
protection to prevent any security breaches, data leakage, and the protection has to operate intelligently at
the application layer where the URLSs live.

WAF capabilities and the role in URL protection:

WAFs are the security layers that are designed to inspect and control the HTTP/S traffic, especially by
analyzing URL paths, headers, query strings, and bodies for signs of attacks. WAFs are typically deployed
as reverse proxies, and they sit between clients and web servers and filter the traffic before it reaches the
application. This allows them to block any threats, such as SQL injection or directory traversal, by
inspecting and enforcing rules. Most WAFs have a negative model of blocklists based on the attack
signatures to detect any known threats, such as detecting <script> tags or SQL keywords like UNION
SELECT. They also use a positive security model with whitelists, which will enforce what a valid request
should look like. This is useful for locking down specific APIs or admin endpoints. Modern WAFs blend
both the models, a broad signature-based shield along with tailored allow lists for critical parts of the app.
A key way the WAFs protect URLs is through normalization and decoding. Attackers use tricks like
%2e%?2e%?2f instead of ../ to evade detection. An efficient WAF decodes and normalizes such inputs to
detect and catch obfuscated patterns and prevent double encoding attacks that slip through naive filters
but get decoded later by the backend [5]. Most WAFs mirror the backend behavior to maintain parity, as
the discrepancies between how a WAF and the server handle the encoding open gaps. WAFs offer real-

IJSAT25049608 Volume 16, Issue 4, October-December 2025 2



https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

time updates through managed rule sets to defend against emerging threats. For example, when the Log4j
vulnerability surfaced, vendors like Cloudflare pushed virtual patches instantly, blocking malicious
patterns in URL parameters and the headers before the apps could be patched [6]. WAFs accommodate
custom rules and logic; administrators can write rules to restrict specific URL paths or ensure parameters
will follow expected formats. Tools such as AWS WAF or Cloudflare let the user define regex-based
filters or conditions like ‘block requests to /admin unless the API key is present.” This forwards the access
control enforcement to the edge and reduces reliance on backend validation.

Behavior-based analysis is another layer, where some WAFs use anomaly scoring or machine learning to
identify any unusual traffic, such as rapid fire 404s or non-standard URL probing, and flag potential
reconnaissance or zero-day attacks. Cloudflare scores the threats based on IP reputation and behavior,
which can trigger blocks or challenges [7]. These capabilities make WAFs essential for URL protection;
they are the policy gatekeepers, decoding, inspecting, and enforcing access controls on the inbound traffic.
These are not foolproof, especially against logic flaws or unknown attack variants, but they provide a
strong first line of defense.

URL PROTECTION TECHNIQUES & WAF INTEGRATION
Protecting the URLs involves more than filtering inputs. Several techniques layered with WAF help reduce
exposure to tampering, guessing, and abuse.

URL rewriting & cloaking:

Rewriting the URLs to hide internal paths, file extensions, or framework indicators that could aid the
attacker. For example, a CMS based URL like /wordpress/?feed=rss2 can be rewritten as /rss2, which
obscures the use of WordPress and reduces the attack surface. WAFs such as Imperva, NetScaler support
rewrite rules that can enforce HTTPS redirects and hide the file structures at the edge [8]. This is limited
to easy reconnaissance, as they don’t fix vulnerabilities. Rewriting has to be done carefully, as poorly
configured rules break the access controls and leave gaps in the downstream security tools if the rewritten
URL differs from the raw request. Logging and filtering the systems have to account for both.

Encoding normalization:

URLs typically contain encoded data, and the attackers use this to mask the payloads, for example,
%55%A4E%49%4F%4E decodes to UNION, which is an SQL keyword, and these are missed by the filters
without proper normalization. The number of times that the WAFs decode depends on the configuration,
and apply regex or pattern rules post-decoding. AWS WAF allows text transformations, such as URL or
HTML decoding, to improve the detection rates. Consistency with the backend is crucial because if the
application decodes differently or multiple times, the attackers can exploit this to bypass the WAF. WAFs
should apply standard forms to treat all the character variants uniformly.

Obfuscation and URL signing:

Many secure applications use obfuscation or cryptographic signing instead of trusting that the URLs have
not been tampered with. One of the common methods is replacing the numeric IDs with encoded or
encrypted tokens, which makes it harder to guess any object references. WAF can enforce formatting rules
to prevent tampering; some advanced WAFs even go further by signing all links with a hash. When a
request comes without a proper signature, it gets blocked. This tightly controls access, and it’s particularly
useful in secure environments, though it requires configuration and maintenance. Pre-signed expiring
URLs, such as AWS S3 links, are another approach; the URLs are valid only for a short time and bound
to a specific signature. This is handled by the application or CDN, and a WAF can validate that expired
or malformed links will not be accepted. Enforcing predictable formats helps reduce risk, even without
full signing. WAFs can act on those patterns and reject anything outside the expected schema.
WAFs are extremely powerful allies in URL protection. They are not just limited to inspecting the traffic,

IJSAT25049608 Volume 16, Issue 4, October-December 2025 3



https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

they decode, normalize, rewrite, filter, and analyze. They bridge the gap between the raw request handling
and secure application logic using features such as managed rule sets, anomaly detection, and custom
logic. They work best when they are part of a larger defense strategy and aligned with secure app
development and tight integration, along with the backend behavior. URL rewriting, encoding
normalization, and token-based verifications add meaningful layers of defense, and WAFs are uniquely
positioned to enforce these rules in real-time.

URL FILTERING AND ACCESS CONTROL
The most direct way to protect URLs is through filtering, where it is decided which URLs should be
accessible and which should be blocked. WAFs are built exactly for this kind of policy enforcement.

Allowlisting (Positive security):

A typical tightly controlled approach is followed where only known URL patterns are allowed. For
example, internal APIs may only allow /V1/getData and /V1/putData, with all other routes being rejected.
This offers strong security but also needs regular updates every time developers add new endpoints, and
WATF rules have to be updated. Some setups integrate the rule updates into CI/CD pipelines, so the URL
changes in code will be reflected in the WAF automatically. Positive security is best for critical areas such
as /admin/* routes, where strict access is the key.

Blocklisting (Negative security):

The reverse approach is to deny known bad actors or unnecessary URL patterns, and this includes blocking
paths like /etc/passwd, .bak files, or unused CMS backends such as /wp-admin. WAFs are generally
shipped with prebuilt blocklists, but custom ones can also help. For example, the system can deny /wp-
login.php to everyone except for a trusted UP range, which is a mix of filtering and access control.

Geo and IP filtering:

This is useful for narrowing access to certain URLs according to geography or the network, and admin
interfaces. For example, access can be restricted to specific countries or IPs. Cloudflare and Sophos WAFs
support this kind of geo-fencing, thus helping reduce unwanted exposure from regions from which no
users are expected [9].

Method-based filtering:

WAFs control HTTP methods according to the URL, for example, allowing only GET on some pages and
denying POST or PUT, these are often abused by the scanners. This will trim down the attack surface and
filter the illegitimate requests before they hit the application.

Learning mode for URL policies:

WAFs such as Imperva or F5 offer a learning mode to observe traffic and identify valid URLs. This can
be used to auto-generate allowlists that are hardened over time, with tuning WAFs to promise low false
positive rates even in the blocking mode. A layered policy that denies bad patterns, allows critical ones,
and lets the WAF's generic rules cover the rest is the most practical approach.

Real-time URL monitoring and response:

Detecting abnormal behavior in real time is just as critical as locking known bad traffic. WAFs generate
detailed logs that can reveal attacks that bypass static rules. For example, an IP triggering a large number
of 404s can signal path scanning. AWS also offers a reference pattern where it uses the WAF logs with
Lambda or Athena to detect any suspicious patterns (60+ errors in 5 minutes) and block that IP
dynamically [10]. This will convert the WAF into a self-updating security system.

IJSAT25049608 Volume 16, Issue 4, October-December 2025 4



https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

Honeypot URLSs:

These are another tactic where the fake endpoints, like /debug/hidden are meant to lure bots. Real-world
users won’t hit them; if one is accessed, it is likely an attacker. AWS recommends using Lambda to block
such attackers immediately once the honeypot is triggered. Leafing WAF platforms such as Cloudflare
provides dashboards which display real-time stats: top blocked URLs, payload trends, and anomaly scores.
Through this, the security teams get early visibility into the attack patterns and enable them for quick
response [11].

SIEM integration:

This helps correlate the WAF logs with alerts from the system. When a credential stuffing attack is
detected on /login, a SIEM can notify the WAF to raise its defenses. Cloud-based WAFs go further with
the help of machine learning, modeling the baseline behavior for URLs and flagging anything unusual,
such as a sudden traffic spike on an obscure page [12]. This is useful, especially in detecting zero-day
threats or abuse of newly exposed URLs. Real-time detection makes WAFs dynamic as it is not just filters
but active participants in the security response.

IMPLEMENTATION STRATEGY & INTEGRATION
WAF-based URL protection is the most effective when it is deeply integrated into the architecture and
workflows.

WAF deployment architecture: W AFs can be deployed at the edge; CDN-integrated like Cloudflare or
AWS CloudFront+WAF, on-prem hardware or virtual appliances like F5 or Imperva, or inline via service
meshes or API gateways. When it comes to microservices, WAF enforcement is done at the ingress or
gateway level. The goal is to ensure that all relevant traffic passes through the WAF. Multi-tiered WAF
setups are common, and an outer edge WAF filters broader threats, while the inner edge WAF enforces
stricter policies.

DevSecOps integration: Modern security requires automation, WAF rules have to be managed as code,
and have to be updated via Terraform, CloudFormation, or API scripts. When the devs add a route, they
also have to update the WAF policy. Monitor mode needs to be used in test environments to tune the rules
and avoid any false positives. Security tests need to be incorporated in CI/CD pipelines to validate that the
WAF logic behaves as expected.

Performance consideration: WAFs add latency, especially with the heavy regex use or due to token
verification. Cloud WAFs are typically optimized for scale, but the on-prem deployments have to be sized
correctly, and redundancy is essential. A decision needs to be made between fail-open, where the traffic
is let through when the WAF fails or fail-closed to block all, a tradeoff between availability and security.

Compatibility: The security team needs to be cautious with over aggressive URL normalization or
rewriting, and that can break the app logic. While using the URL signing or tokens, it needs to be ensured
that the WAF preserves them. Some WAFs are better suited for API traffic. One should choose that can
handle JSON, WebSocket, or GraphQL traffic if needed.

Logging and compliance: W AFs help meet and maintain the standards, such as PCI DSS by acting as
compensating controls. Logging allowed and blocked requests with full URL context aids forensic
investigations and compliance reporting. Analytics such as top-targeted URLs can be exported to show
the ROL.

Multi-cloud and hybrid environments: When using multiple clouds, the decision of whether to deploy
native WAFs per cloud (AWS WAF, Azure WAF) or go with a centralized cloud-agnostic WAF like

IJSAT25049608 Volume 16, Issue 4, October-December 2025 5



https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

Imperva. If both are used, Cloudflare as CDN and AWS WAF as ALB, the rules have to be coordinated
carefully to avoid overlap or unintended blocks.

WAFs perform more than just blocking the bad traffic; they actively shape how the URLs are exposed,
interpreted, and secured. Through combining with techniques such as allow listing, behavior monitoring,
and token enforcement, they are a critical part of the application layer defense. The key is a tight and
thoughtful integration, deploying at the right points in the stack and keeping them updated, and ensuring
visibility through analytics. With the help of the right architecture, WAF becomes a dynamic guardian of
the application’s web presence.

REAL-WORLD USE CASES OF WAF & URL PROTECTION
In the context of protecting modern web applications that expose URLs to users and clients, the role of
WAF is critical. WAFs can be seen used daily in real-world deployments, tackling everything.

Securing admin panels and login interfaces:

An enterprise has a typical admin interface, something like /admin, /backend, or /login. These are probed
by attackers through trying to find an exposed tool or plugin, brute force attempts, and credential stuffing.
WAF is the first line of defense. Cloudflare allows simple policy rules such as “only access to /admin from
the office IPs,” and everything else gets blocked or flagged [13]. AWS WAF supports a similar set of
rules, and Imperva can do this while adding bot fingerprinting and anomaly detection.

Rate limiting plays a major role, a login form should not allow unlimited requests per minute. Mature
WAFs, such as AWS, Imperva, and Cloudflare, can throttle the attempts, generating CAPTCHAs or
outright blocking the client after repeated failures. Vendors offer token-based rate enforcement too. Users
legitimately loading the login page get a hidden token issued, and if the token is missing in repeated hits,
it might be a bot. Some WAFs also integrate with identity providers, Azure WAF with Azure AD, for
example, enforcing the authentication at the WAF level. Even before displaying the admin login form, the
client might be forced to complete OIDC auth (adding a login gate before the login page). These controls
are not just hypothetical, many breaches, especially of WordPress-based sites, happen because /wp-
login.php is left wide open. Teams that are using Cloudflare or Imperva to restrict access to the URL have
seen massive reductions in takeover attempts.

Protecting public APIs from abuse and exploitation:

Exposed APIs are another high risk area, for example, if a fintech firm offers endpoints like /api/v1/transfer
or /balance. These need to be accessible to the apps and partners, but are also highly prone to abuse. AWS
WAF can be associated with the API Gateway or ALB and set up rules that enforce logic specific to the
API. For instance, when a field like amount should be numeric and under a certain value, custom rules
can also be built to flag or block the anomalies. Cloudflare offers the API Shield product, which enforces
client-side TLS certificates for API users and performs schema validation. Imperva has its API schema
learning, where the Open API spec can be fed into it, or let it learn the traffic, and block the out-of-spec
calls [14]. This is key when someone tries to guess undocumented endpoints.

Bot mitigation is a major use case, where the APIs are often hammered with automated tools that are trying
to test stolen credentials, scrape prices, or simulate traffic. Cloudflare’s behavior analysis or Imperva’s
ThreatRadar can detect patterns such as header anomalies, client behavior, or missing tokens and cut the
bots off before they attack the application logic. A neobank using AWS WAF with API Gateway has
implemented method restrictions, applied bot filtering, and created IP-based access controls. Lower server
load and fewer fraud attempts have been reported because the WAF has blocked the noise at the edge.

IJSAT25049608 Volume 16, Issue 4, October-December 2025 6



https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

Throttling and defending against URL-based DDoS:

High-profile web apps are typically targeted with DDoS attacks at the application layer. The attackers are
flooding the TCP ports and slamming dynamic URLs like /search or /generatePDF, and are trying to
overwhelm the backend. Cloudflare has a clear edge, it has a massive network that allows it to absorb
enormous volumes of traffic, and the IUAM (I’'m under Attack Mode) is switched on. It injects JS
challenges for every request, which is a simple but effective way to filter the bots [15]. This can be applied
to high-load endpoints, and the rest of the site remains user-friendly. AWS uses Shield Advanced along
with WAF rules to perform adaptive rate control. If one IP is making too many requests on a particular
route, the system can auto-block it or move it to a CAPTCHA challenge bucket. Imperva’s cloud WAF
can fingerprint abusive devices, even if the attacker is changing IPs, the block can persist. Some companies
lean on the CDN caching, if /product or /info pages can be served from cache for even 30 seconds, that is
hundreds of requests that will never reach the application server. By combining the WAF rules with CDN
behavior, it can push 80% of the bot traffic out of the edge.

In a certain attack, a retail brand has seen massive login floods. Imperva identified the spike in failed
logins, which was tied to credential stuffing, and automatically enabled the challenge mode for that URL.
The backend remained stable, and account lockout mechanisms have been triggered for a few real users,
which avoided downtime and data leaks.

Rapid response to vulnerabilities: virtual patching

When a critical CVE hits a zero-day SQLi in the web framework that the application uses, a fix cannot be
deployed for a few days. In such situations, WAFs step in with virtual patching, a rule that identifies the
exploit signature and blocks it before it reaches the vulnerable code. This has been observed during
Log4Shell, Cloudflare, Imperva, and AWS have rolled out WAF rules that target the JNDI pattern. This
buys the team time to test and deploy the server-side fixes. AWS WAF’s managed rules got updated in
hours. Imperva known for its rapid threat intelligence, has issued patch signatures almost instantly [16].
This is not just about speed, it is about safety when every minute counts. One university discovered path
traversal via a file= parameter. Before rewriting the code, a WAF rule block has been created to block any
query that contains . . / or unexpected characters. This stopped the attackers until the developers could
push a proper patch.

COMPARATIVE OVERVIEW OF MAJOR WAF SOLUTIONS

Cloudflare WAF (Cloudflare Application Security)

Cloudflare’s WAF is one of the most widely used web application security platforms, particularly with
mid-market and cloud-first organizations. It is entirely cloud-based and deployed across Cloudflare’s
global edge network, which provides the immense scalability and reach [17]. The biggest advantages are
the ease of deployment, and basic protections can be enforced within minutes using the pre-built managed
rule sets. The rule sets are frequently updated and cover common vulnerabilities like SQL injection and
XSS. The intuitive dashboards accommodate quick creation of custom rules that are based on URL path,
query strings, IP reputation, and geolocation [18]. URL filtering is straightforward, and the WAF works
seamlessly with Cloudflare’s CDN and the rate limiting features, which help mitigate both volumetric and
application layer attacks. Advanced capabilities like bot detection, API schema enforcement, and anomaly
scoring are gated behind enterprise tier plans. As Cloudflare serves thousands of diverse customers, its
managed rule sets are broad and may need application-specific tuning to avoid false positives. Cloudflare
is an excellent fit for organizations that are seeking quick setup, high availability, and globally distributed
security without managing the infrastructure [17].

Imperva (Cloud WAAP & SecureSphere on-prem)

Imperva provides both cloud-based and on-premises WAF solutions, which gives it a strong appeal in
regulated and hybrid enterprise environments. Its cloud WAAP (Web Application and API Protection) is
suited for public-facing apps, while the SecureSphere appliance or VM is being used in the datacenter

IJSAT25049608 Volume 16, Issue 4, October-December 2025 7



https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

deployments. Imperva is known for granular control and intelligent protection capabilities [19]. WAF can
automatically learn the application URL patterns and parameter structures in a staging phase, then enforce
positive security rules that block anything outside specifications. This is highly effective while protecting
APIs, legacy apps with inconsistent input validation, and sensitive admin interfaces. Imperva has a
decoding engine that is robust and resistant to any evasion attempts, and its RASP (Runtime Application
Self-Protection) integrations give deep insights into the runtime behavior [20]. The hybrid of WAF and
RASP allows Imperva to reduce false positives while detecting deeper logic flaws. The threat research
team pushes out rapid virtual patches for zero-days, which is critical in early response windows. But
Imperva’s strength comes with some added complexity. The initial setup can be involved, which requires
careful tuning and policy management. Imperva is chosen by security-conscious enterprises that are
looking for precision and depth in their WAF stack.

AWS WAF

AWS WAF IS Amazon’s native web application firewall, which is custom-built to protect the workloads
running inside the AWS infrastructure. This integrates directly with AWS services like API Gateway,
Application Load Balancer (ALB), CloudFront, and AppSync. AWS WAF is a seamless fit with the AWS
ecosystem, and rules can be configured via the console, CloudFormation, APIs, and Terraform. URL
protection is typically handled through pattern-matching rules on URL paths, HTTP methods, and query
parameters, but the rate-based rules throttle brute-force or scraping attempts. AWS WAF supports
transformations such as decoding or normalizing the input, helping catch obfuscated threats [21]. The
recent improvements include the addition of managed rule sets, CAPTCHA challenges, and modules like
Bot Control and Fraud Control, which are making it competitive with traditional WAAP platforms. AWS
WATPF is highly automatable, and many customers have set up Lambda scripts that parse WAF logs and
dynamically update the blocklists based on the attack behavior. AWS WAF has a steeper learning curve
for non-AWS teams, and the user interface lacks some analytics polish found in competitors like
Cloudflare or Imperva [22]. AWS WAF, if not used with CloudFront, becomes region-specific, which
means separate WAF instances have to be managed across multiple geographies. It is pay-as-you-go
pricing, and it can spike if the traffic volumes and the rule complexity grow. For DevOps-centric teams
that are already in the AWS ecosystem, this offers tremendous flexibility and control.

Akamai App & API protector

Akamai is a veteran in the content delivery and edge security space; its App & API Protector WAF is built
above the same globally distributed network that serves massive media, commerce, and finance brands.
These solutions are designed for stability and scale. It is a popular choice for enterprises that are expecting
huge traffic volumes and need strong bot defense, resilience, and API security. Akamai has good support
for URL protection, which includes custom rule creation, schema validation for API, and bot mitigation
techniques. Integration with Akamai’s CDN ensures a strong bond between performance and security,
similar to Cloudflare’s model. Akamai has good support and managed services offerings, and many
enterprises rely on Akamai’s team for implementation and tuning the WAF policies. While customers get
good service, smaller teams find Akamai less DIY friendly compared to tools like AWS WAF or
ModSecurity. Akamai also has slower release cycles when compared to the agile platforms, such as
Cloudflare, but its robustness and stability outweigh that. Akamai is the choice if the enterprise needs a
scalable, consistent, and well-supported WAF with API protection for the global application.

F5 / NGINX (Advanced WAF and NGINX app protect)

F5’s WAF has offerings that span both hardware appliances and software-based solutions like NGINX
App Protect [23]. The solutions are common in environments that use F5 for load balancing, centralized
app delivery, or traffic shaping. F5 advanced WAF includes deep application inspection, bot protection
via JavaScript challenges, and behavior traffic analysis. F5 is customizable, and it can be integrated into
the existing enterprise infrastructure. When it comes to container native side, NGINX App Protect is

IJSAT25049608 Volume 16, Issue 4, October-December 2025 8



https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

gaining traction among DevOps teams requiring WAF security baked into the Kubernetes or microservice
architectures. The system is lightweight, fast, and integrates with NGINX ingress controllers. Managing
F5 WAFs, especially on-prem, requires significant expertise, planning for throughput, and ongoing tuning.
F5 also offers a cloud WAF option, Silverline, which has not gained market traction as much as Cloudflare
or AWS in SaaS first environments. For enterprises with internal expertise or existing F5 investment, it is
a logical extension for deep URL filtering and protection.

ModSecurity with OWASP core rule set (CRS)

ModSecurity is an open-source WAF engine and is typically deployed alongside Apache, NGINX, or in
containerized environments. When paired with OWASP Core Rule Set (CRS), it provides a solid baseline
protection against the OWASP top 10 vulnerabilities, along with including the URL-based attacks such as
path traversal, XSS, and SQL injection. The major strengths are flexibility and cost-effectiveness; teams
are enabled to write custom rules, deploy them in tailored environments, and have complete control over
the WAF behavior. It is favored in academic, startup, and small enterprise environments where the budgets
are limited but there is in-house expertise. ModSecurity lacks features of a modern WAAP platform; it
does not have built-in bot mitigation, automated patching, or machine learning, and rule tuning and false
positives are time-consuming [24]. Relying heavily on manual configuration, there is no commercial
vendor pushing frequent rule updates, and one needs to subscribe to a third-party feed for regular updates.
ModSecurity is suited for teams that want full control and are comfortable maintaining the WAF
themselves. Larger and dynamic environments have a maintenance burden that outweighs the benefits,
particularly when compared to managed WAF offerings with integrated analytics, threat intelligence
feeds, and virtual patching.

There is no one-size-fits-all solution; each solution has its pros and cons in terms of URL protection
capabilities, management overhead, and cost. Cloudflare and Akamai excel at distributed protection and
simplicity for handling huge floods and common threats. AWS WAF offers integration and flexibility in
the WAS ecosystem, Imperva leads in fine-tuned security and hybrid deployment, and others like F5 offer
deep enterprise integrations for enterprises needing it. All the leading solutions are capable of significantly
improving the security posture when it comes to web traffic and URLs; it boils down to aligning them
with the organizational needs and using them for their strengths.

CONCLUSION

URL protection is an important component of modern web application security. The URL can be a
gateway for a variety of attacks, including straightforward exploits such as SQL injection or path traversal,
complex abuse patterns such as session manipulation, and targeted DDoS attacks. In the era where the
applications are distributed across cloud infrastructure and microservices, and where agile development
translates into constant changes to the endpoints, having a strong, adaptive defense at the URL level is
critical. Integrating WAFs with URL protection mechanisms provides a powerful solution. WAF brings
a deep inspection engine, a repository of evolving threat intelligence, and the ability to enforce rules at
scale without modifying the application code. Through leveraging the WAF capabilities, such as request
normalization, positive security modeling, signature detection, and rate limiting, organizations shield their
applications from URL-borne threats at the perimeter. Specific URL protection techniques, such as
rewriting, signing, monitoring, filtering, and encoding controls, address the nuanced ways that URLs can
be secured or abused. A robust layered defense can be achieved by implementing these techniques along
with WAF enforcement.

URL rewriting can hide the implementation details and reduce the attack surface. The strict encoding and
normalization prevent evasion, obfuscation, and signing of the URLSs, which can enforce authenticity and
intent. Filtering and access control rules act as the gatekeepers for sensitive paths, and transforming the
defense into a feedback-driven active system through real-time monitoring. Real-world examples from
Cloudflare, AWS, Sophos, Imperva, and others are illustrated and prove that these are not theoretical ideas

IJSAT25049608 Volume 16, Issue 4, October-December 2025 9



https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

but proven practices in the industry. For instance, Cloudflare’s simple page rules block the admin URLs
by IP, or Sopho’s advanced URL signing for static links, they provide a template that the enterprises can
adapt depending on the risk profile. AWS WAF automations show that enterprises can automate responses
to scanning activity, which reflects a growing trend of autonomous edge defenses.

The integration of the solution is as important as the technology. The best outcomes have been observed
when the security teams and the development teams work hand in hand, defining which URLSs need to be
protected, integrating security into API designs, and tuning WAF policies as the application keeps
evolving. In the DevSecOps approach, the WAF rules are updated with the application deployments, and
the WAF telemetry feeds back into development (e.g., highlighting a metric that is not validated properly
in code because the WAF caught unusual input), which leads to a cycle of improved security. Enterprises
have WAF as a dynamic shield that can adjust on the fly and respond to emerging threats, and gain a
significant advantage in addressing zero-day vulnerabilities and spikes in sudden attacks (Log4j virtual
patching). Comparative analysis of WAF/WAAP solutions highlights that even though products are
different, many of the solutions are effective with proper deployment. Organizations should choose a
platform according to their technical stack and expertise. The capability of the WAF is not dependent on
the brand, but on the way it is implemented and used. A poorly tuned WAF is prone to becoming a
bottleneck and generating alert fatigue, while a well-tuned WAF can block myriad attacks. Over-reliance
on WAF while lacking sound application security is risky; WAFs are a safety net. In defense in depth, the
application has to validate the inputs and enforce AuthZ, while the WAF provides external enforcement
with catch-all filtering, and the monitoring layers provide oversight and quick response.

Integrating URL protection along with WAFs enables organizations to define the pathways that attackers
seek to exploit, while maintaining the pace of development and the user experience. This brings the agility
of the application development and the fortification of perimeter defense. This makes the risk lower and
easier compliance reporting for CISOs, as the WAF logs can be observed as blocked attacks. DevSecOps
teams get a practical way to enforce the security requirements constantly, and for security architects, it
provides a blueprint for incorporating security into the fabric of the application delivery architecture.
The threat landscape is ever-changing, and with new CVEs, creative exploit techniques, and automated
botnets, it ensures that URL-level attacks continue to evolve. Organizations armed with strategies and
tools outlined that they can evolve their defense in accordance. Integration of WAF and URL protection
is an ongoing practice, and it pays off by keeping the applications resilient and reliable. These measures,
after implementation, have to be periodically reviewed and tested to ensure that the security goals are met
without hindering legitimate users. Organizations can significantly harden the web applications’ first line
of exposure (URLs) with careful planning and the right tools, thereby protecting valuable assets and data
that lie behind.

REFERENCES:

[1] Cloudflare. “Understanding URL Normalization and Edge Rule Processing,” Cloudflare Docs, 2023.

[2] AWS. “Rate-Based Rules in AWS WAF,” AWS Developer Guide, 2023.

[3] Imperva. “Virtual Patching with Imperva WAF,” Imperva Threat Research, 2022.

[4] OWASP Foundation. “OWASP ModSecurity Core Rule Set (CRS),” OWASP Project Wiki, 2023.

[5] Akamai. “App & API Protector Overview,” Akamai Product Documentation, 2023.

[6] F5 Networks. “Advanced WAF Features Overview,” F5 Technical Whitepaper, 2023.

[7] Google Cloud. “Behavioral Anomaly Detection for Web Traffic,” Google Cloud Security Blog, 2023.

[8] Microsoft Azure. “Integrating Azure WAF with Azure Active Directory,” Microsoft Learn, 2024.

[9] Sophos. “Geo-IP Based Policies for WAF,” Sophos Firewall Documentation, 2023.

[10] AWS. “Real-time Attack Detection Using AWS WAF, Lambda, and Athena,” AWS Security Blog,
2022.

[11] AWS. “Implementing Honeypots with AWS WAF and Lambda,” AWS Prescriptive Guidance, 2021.

IJSAT25049608 Volume 16, Issue 4, October-December 2025 10



https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

[12] Google Cloud. “ML-Driven Threat Detection in Web App Firewalls,” Google Cloud Security, 2023.

[13] Cloudflare. “Restricting Access to Sensitive URLs,” Cloudflare Docs, 2022.

[14] Cloudflare. “API Shield — Securing APIs with mTLS and Schema Validation,” Cloudflare Blog,

2023.

[15] Cloudflare. “How ‘I’m Under Attack Mode’ Protects Your Site,” Cloudflare Blog, 2021.

[16] Imperva. “Rapid Virtual Patching in Response to CVEs,” Imperva Threat Research, 2021.

[17] Gartner. “Magic Quadrant for Web Application and API Protection,” Gartner Research, 2023.

[18] Cloudflare. “Cloudflare Managed Rulesets and WAF Overview,” Cloudflare Documentation, 2024.

[19] Imperva. “Imperva WAF Data Sheet,” Imperva Product Documentation, 2024.

[20] Imperva Threat Research. “WAF Decoding Engine and Evasion Resistance,” Imperva Blog, 2023.

[21] AWS. “AWS WAF Text Transformations and Rule Logic,” AWS Developer Guide, 2023.

[22] SC Magazine. “AWS WAF Review: Strengths and Gaps,” SC Labs, 2023.

[23] F5. “NGINX App Protect for Kubernetes,” F5 Documentation, 2023.

[24] OWASP Foundation. “ModSecurity Core Rule Set (CRS) and Feature Gaps,” OWASP ModSecurity
Wiki, 2024.

IJSAT25049608 Volume 16, Issue 4, October-December 2025 11



https://www.ijsat.org/

