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Abstract –  

Semantic Information Theory (SIT) extends classical information theory by focusing on the meaningful 

content of communicated data rather than mere symbol transmission. This review paper bridges the 

foundational theories of semantic information—such as those by Bar-Hillel, Carnap, MacKay, and 

Floridi—with modern advances utilising fuzzy linguistic and possibilistic techniques. Classical 

approaches provide quantitative and logical frameworks but often struggle to handle vagueness, context, 

and meaning in natural language and human communication. Fuzzy set theory and possibility 

distributions, pioneered by Zadeh and further developed by contemporary researchers, offer robust 

mathematical tools to model semantic content under uncertainty and imprecision. These modern methods 

encode meaning as restrictions and graded membership functions, enabling more nuanced measurement 

and interpretation of semantic information that better aligns with human linguistic and cognitive processes. 

Integrating these perspectives, the paper highlights the theoretical evolution from syntactic to semantic 

measures, discusses practical benefits in AI and hybrid systems, and underscores ongoing challenges in 

formalising a comprehensive, operational semantic information framework. This synthesis provides a 

cohesive understanding of how data and meaning converge in semantic information theory, fostering 

progress in knowledge representation, decision making, and intelligent communication systems. 

Keywords - Semantic Information Theory, Fuzzy Logic, Possibility Theory, Information Measurement, 

Zadeh’s Restriction Principle, Information and Meaning, Knowledge Representation, Uncertainty 

Modelling. 

I . Introduction  -  

Semantic Information Theory (SIT) marks a significant advancement beyond Claude Shannon’s 

pioneering work in information theory, which primarily quantified “how much” information is transmitted 

through a communication channel without concern for its meaning. SIT addresses a more fundamental 

and practical question: “what” information means, focusing on the semantic content conveyed between 

sender and receiver. The importance of SIT arises from the recognition that effective communication 

transcends reliable symbol transmission to encompass understanding, interpretation, and meaningful 

knowledge exchange, particularly in advanced domains such as artificial intelligence, knowledge 

management systems, and linguistic computation (Mingers, 1996). 
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Weaver’s classic tripartite classification of the communication problem sets an important framework for 

the study of information: 

 Technical problem: The accurate and efficient transmission of symbols through a channel, the 

focus of Shannon’s classical information theory. 

 Semantic problem: The faithful conveyance of the intended meaning behind the transmitted 

symbols. 

 Pragmatic problem: The impact of the received message on the behaviour or response of the 

receiver (Karanjgaonkar, 2023). 

While Shannon’s entropy successfully resolved the technical problem by providing a robust quantitative 

measure of information reliability, it deliberately left the semantic and pragmatic problems unaddressed. 

The semantic dimension is especially crucial today as the complexity and volume of data rise, and the 

need for machines to process and understand natural language and ambiguous inputs becomes imperative. 

SIT hence emerges as a vital theoretical and practical field concerned with modelling, measuring, and 

processing the meaning and context of information (Karanjgaonkar, 2023). 

With the increase in interdisciplinary applications, ranging from natural language processing and expert 

systems to decision theory and cognitive science, SIT seeks to provide rigorous frameworks that 

incorporate uncertainty, vagueness, and meaning beyond raw data transmission. This evolution bridges 

the gap between data and knowledge, enabling more intelligent and human-centred information systems 

(Mingers, 1996; Karanjgaonkar, 2023). 

II. Literature Review –  

Semantic Information Theory (SIT) has evolved from classical probabilistic and logical frameworks 

towards more encompassing approaches that integrate fuzzy logic and possibility theory. This section 

reviews major theories, their mathematical foundations, strengths, and limitations. 

Classical Theories of Semantic Information 

Bar-Hillel and Carnap (1952) were pioneers in formulating semantic content mathematically. 

Their Classical Semantic Theory (CST) models the semantic information content of a statement A based 

on how many possible states of the world it excludes. The logical probability m(A) measures the 

likelihood of A, and semantic content and information are defined as: 

     Content(A) = 1 − m(A)  ……..(1) 

     Information(A) = − log2 m (A) ……..(2) 

A tautology (m(A) = 1) excludes no states and thus has zero content, whereas a contradiction excludes 

all states, having maximum content. However, this theory suffers from the Bar-Hillel-Carnap paradox 

(BCP) where contradictions possess infinite information, which is counterintuitive (Karanjgaonkar, 2023). 

Hintikka (1968) refined this by defining the information content I(h) of a statement h as the reduction in 

the uncertainty of the receiver: 
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                                                                 I(h) = − log2 ph = − log2 (
wh

2K
) ……..(3) 

where ph is the logical probability, wh the width of statement h, and K the number of constituent 

statements. This refines the information measure but was found limited in practical semantic analysis 

(Karanjgaonkar, 2023). 

Dretske (1981) provided a philosophical framework linking semantic information to the receiver’s 

knowledge k and conditional probabilities: 

r carries information about s is F ⟺ P( s ∈ F ∣ r, k ) = 1 and P( s ∈ F ∣ k ) < 1 

Jumarie’s Relative Information Theory (1990) considers communication as a two-stage process: syntactic 

entropy H(a) and semantic entropy H(a ∣ l) 

Htotal = H(a) + H(a|l)  ……..(4) 

where a is the source string of symbols and l is the meaning assigned by the observer. This subjectively 

weights semantic information but remains limited to formal domains.  

Floridi’s Strong Semantic Theory (2004) introduces the concept of semantic deviation v and computes 

informativeness as: 

Info(oi) = 1 − v2   ……..(5) 

for an information instance oi, with v ∈ [−1,1] representing the degree of discrepancy from a reference 

situation w. Floridi quantifies semantic information by integrating this measure over possible states, but 

practical calculation challenges exist (Karanjgaonkar, 2023). 

Fuzzy Logic and Possibilistic Approaches 

To overcome the limitations of sharp logical probabilities, Zadeh's fuzzy set theory (Zadeh, 1965) 

introduces membership functions μF(x) that grades the degree to which an element x belongs to set F 

μF: X → [0,1]    ……..(6) 

and the notion of possibility distributions for a variable X: 

Poss(X = u) = μF(u)  ……..(7) 

Representing linguistic vagueness as fuzzy constraints, Zadeh conceptualises natural language statements 

as elastic restrictions:  

X is F    ……..(8) 

where F is a fuzzy set defining the possible values of X with graded membership (Karanjgaonkar, 2023). 

Specificity—a measure analogous to entropy—is used to quantify how focused a fuzzy set is: 

Specificity(A) = 1 −
∑ (ai−ai+1)n

i=1 log i

log n
 ……..(9) 
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where ai are ordered membership grades and n the number of elements (Yager, 1996). Dubois and Prade 

(1997) demonstrated that possibility and probability measures can be connected via transformations, 

enabling graded semantic uncertainty modelling while retaining meaningful mathematical structure 

(Karanjgaonkar, 2023) 

Classical semantic information measures provide valuable formal insight but fail to handle real-world 

linguistic vagueness and context dependence. Fuzzy set theory and possibility distributions, grounded in 

Zadeh's approaches, bring flexible, graded, and context-sensitive modelling methods supporting advanced 

semantic information measurement, crucial for AI and hybrid systems. 

The Dempster-Shafer Theory of Evidence (DST) 

The Dempster-Shafer Theory of Evidence (DST), also known as evidence theory or belief functions 

theory, provides a powerful and flexible mathematical framework for reasoning under uncertainty when 

information is incomplete, imprecise, or conflicting. Unlike traditional probability theory, which assigns 

probabilities to mutually exclusive events, DST allows belief to be assigned to sets or subsets of 

possibilities, more naturally capturing epistemic uncertainty and ignorance (Shafer, 1976). 

At its core, DST uses a mass function m: 2X → [0,1], defined over the power set 2X of the frame of 

discernment X, which assigns belief masses to subsets of X, called focal elements, representing the 

evidence supporting those subsets:    

                                                             ∑ m(A)A⊆X = 1,  m(∅) = 0    ………(10) 

 The belief function Bel(A) is the total belief exactly supporting subset A and all its subsets:  

                                                             Bel(A) = ∑ m(B)B⊆A  ………(11) 

while the plausibility function Pl(A) considers all subsets that intersect A, capturing how plausible A is 

given the evidence:  

                                                       Pl(A) = 1 − Bel(Ac) = ∑ m(B)B∩A≠∅ ……..(12) 

These two functions provide lower (belief) and upper (plausibility) bounds on the probability of A, 

effectively sandwiching uncertainty between what is supported and what is not contradicted by evidence 

(Shafer, 1976). 

A key innovation is Dempster’s rule of combination, which provides a method for fusing independent 

pieces of evidence from multiple sources to update belief succinctly while managing conflicts. If two 

independent mass functions 𝑚1 and 𝑚2 are defined over the same frame, their combined mass m is: 

                             m(A) =
1

1−K
∑ m1(B)m2(C)B∩C=A ,  K = ∑ m1(B)m2(C)B∩C=∅ …………(13) 

where K measures the degree of conflict between sources (Sentz & Ferson, 2002). 

DST is especially valuable in real-world situations where data sources provide partial, uncertain, or even 

conflicting information. It explicitly models ignorance and incomplete knowledge, allowing systems to 

make cautious yet informed decisions, updating beliefs as new evidence arrives. Applied across sensor 
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fusion, decision support, and AI reasoning, DST affords robustness beyond classical probabilistic models 

by supporting a flexible spectrum between full belief and complete ignorance (Taroun & Yang, 2019). 

In summary, DST offers a mathematically rigorous, yet operationally practical, framework to represent, 

combine, and reason with multifaceted evidence in semantic information contexts, thus strongly 

advocating its inclusion in any comprehensive general theory of information and uncertainty. 

III. Modern Methods: Fuzzy Linguistic and Possibilistic Measures 

Fuzzy Linguistic Approach 

The fuzzy linguistic approach recognises that much of human knowledge and communication is imprecise 

or graded, not binary or crisp. Fuzzy set theory, formalised by Zadeh in 1965, introduced the possibility 

of modelling vague concepts by assigning each element in a universe a degree of belonging, or 

membership, between 0 and 1 (Zadeh, 1965; Karanjgaonkar, 2023).     μF(x): X →

[0,1] 

In this framework, linguistic terms—such as "tall," "very hot," or "quite expensive"—are directly mapped 

to fuzzy sets that capture their vagueness in mathematical form. Modern information modelling capitalises 

on this property by constructing membership functions (vertical, horizontal, similarity, or empirically 

based) for such linguistic variables, so that human statements can be processed and compared 

quantitatively. This approach supports the representation of meaning and context in information analysis, 

making it vital in expert systems, AI, and knowledge management. 

Zadeh's Fuzzy Restriction Principle 

Zadeh’s restriction principle asserts that many natural language statements can be interpreted as elastic 

constraints ("restrictions") on variable values (Zadeh, 1978; Karanjgaonkar, 2023). For example, "The 

temperature is high" restricts the temperature variable to values within a fuzzy subset of possible values 

labelled 'high.' These restrictions are mathematically described by fuzzy sets—specifically, the statement 

“X is F” indicates a restriction on X such that its value belongs to fuzzy set F. A possibility distribution is 

then induced, where the possibility of X = u is given by the membership μF(u).    

 Poss(X = u) = μF(u) 

This paradigm, deeply embedded in the methodology called Computing with Words, underpins natural 

language processing, AI, and reasoning under uncertainty. 

Possibility Distributions and Restriction-Based Methods 

Possibility theory, an outgrowth of fuzzy set theory, represents information and uncertainty through 

possibility distributions rather than probabilities (Karanjgaonkar, 2023). In possibility theory, the 

possibility measure of a set A of outcomes is defined as the highest possibility assigned to its elements, 

formally: 

PossF(A) = sup
u∈A

rF (u)……….(14) 

Here rF(u) is the possibility degree associated with the value u in fuzzy set F. The associated necessity 

measure is given by:      NecF(A) = 1 − PossF(Ac)…….(15)  
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Possibility distributions are especially useful in modelling epistemic uncertainty (ignorance, partial 

knowledge), with practical fitting methods including similarity-based assignments, measurement scales, 

and aggregation of empirical data. They are also central to modelling and analysing information, scaling 

from fully specific (singleton/sure) to completely ignorant (all values possible). 

The process of "instantiation and precisiation" converts natural language restrictions into formal 

possibility distributions—the minimum specificity distribution that conforms to observed or described 

data. This enables robust integration of semantic restriction into information systems (Karanjgaonkar, 

2023). 

Benefits and Advances 

 Context-sensitive representation: Fuzzy and possibilistic measures model both the qualitative and 

quantitative variability in linguistic data, supporting refined approaches to knowledge 

representation and reasoning. 

 Bridging uncertainty and meaning: They provide a natural way to reconcile the imprecision found 

in natural language with quantitative analysis, supporting hybrid reasoning in AI, decision-making 

systems, and knowledge processing. 

 Practical advantages: Restriction-based possibilistic approaches offer common-sense applicability, 

faster approximate reasoning, and robustness against incomplete or noisy data, which are 

limitations of crisp (probabilistic) methods. 

 Expanding the semantic scope: These methods have led to advances in the analysis of specificity 

(how much information is focused), similarity between distributions, and systematic conversion 

between possibility and probability representations, granting wide scope for applications in hybrid 

and adaptive systems. 

IV. Synthesis: Recent Research and Applications 

Recent research in semantic information theory highlights the need for an integrated, general theory of 

information and uncertainty—one that unites syntactic, semantic, and pragmatic aspects and supports real-

world applications where data, vagueness, and meaning must be processed together. 

Toward a General Theory: The Trinity Model 

Modern theoretical advances (Zhong, 2017) emphasize a “trinity” model for information: 

 Syntactic information (structure), 

 Semantic information (meaning), 

 Pragmatic information (utility, action), 

suggesting that only the combination of these facets yields truly useful information for intelligent 

systems and human cognition. 

This “information ecosystem” (Zhong, 2017) can be modelled mathematically as the transformation of 

raw object information S into syntactic (X), semantic (Y), and pragmatic (Z) forms: 
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Y = f(X, Z)y = f(x, z),  where x ∈ X,  y ∈ Y,  z ∈ Z 

Uncertainty: Fusing Probability and Possibility 

Classical information theory uses Shannon entropy: 

H = − ∑ pii log pi                  ………(16)  

but this only captures average uncertainty in discrete settings. In many real-world scenarios (sensor fusion, 

decision-making with vague data, intelligent agents), information is incomplete, vague, or context-

dependent. 

Possibility theory generalizes this, employing possibility distributions Π(x) and related measures for both 

“epistemic” (knowledge-based) and “physical” (feasibility-based) uncertainty: 

Poss(A) = sup
x∈A

Π (x) 

Nec(A) = 1 − Poss(Ac) 

Practical systems often require fusion of probability- and possibility-based information (e.g., multimodal 

sensory data in robotics, semantic command interpretation in hybrid human–machine systems) for robust 

reasoning and action. 

Scenario 1: Hybrid Human–Machine Systems 

In collaborative AI (e.g., smart environments, robotics, cognitive assistants), machines must interpret both 

precise sensor data (probabilistic) and human commands (possibilistic, fuzzy). Semantic information 

analysis here follows: 

 Step 1: Data stream from sensors X = {x1, x2, … , xn} with frequencies F = {f1, … , fn} 

 Step 2: Construction of both probability and possibility distributions: 

P(xi) =
fi

N
, πm(xi) =

fi

fm
     ……….(17) 

 Step 3: Selection of actions/decisions is then based on the fusion of these measures, evaluated via 

proximity, specificity and similarity indices (Karanjgaonkar & Jha, 2018) 

Proximity Value(PV) = ∑ |πm(xi) − P(xi)|n
i=1   ……….(18) 

This approach enables robust AI decision-making the presence of vagueness and partial knowledge. 

Scenario 2: Semantic Interpretation in Multimodal Data (Cognitive Systems) 

Bhatt & Kersting (2017) highlight applications in cognitive vision, human–robot interaction, and 

activity/situation interpretation from multimodal sources (text, video, sensor streams): 

 Integrated frameworks use declarative abstraction and neural-symbolic models to assign semantics 

(meanings, intentions) to observed behaviour in uncertain, dynamic environments. 

 Deep semantic and possibilistic reasoning guides the assignment of meaning and prediction of 

actions, crucial in assistive technologies for healthcare, smart homes, and autonomous vehicles. 
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Scenario 3: Decision Support and Resource Planning 

Possibilistic semantic information models are applied in production and service planning: 

 Representation of vague demand as possibility distributions, 

 Aggregation of expert input using fuzzy restrictions, 

 Optimisation using scenario analysis and similarity-specificity measures to select feasible plans 

under uncertainty. 

For example, in aggregate service planning, each demand scenario is modelled as a possibility distribution, 

and the optimal plan is chosen by maximising similarity and specificity (Karanjgaonkar & Jha, 2018). 

Similarity(π1, π2) = 1 −
1

n−1
∑ |π1(xi) − π2(xi)|n−1

i=1  ……….(19) 

Advocacy for a Unified Theory 

Across these domains, researchers (Zhong, 2017; Jayesh, 2023; Bhatt & Kersting, 2017) repeatedly find 

that no single probabilistic or possibilistic framework alone suffices. The fusion of syntactic, semantic, 

and pragmatic information—coupled with representations for both stochastic and possibilistic 

uncertainty—is essential for robust, adaptable decision support, knowledge systems, and intelligent 

agents. 

Scenario applications—ranging from autonomous decision systems to semantic reasoning in hybrid 

environments—demonstrate the operational need for a unified general theory of information and 

uncertainty, as both foundational and context-driven models must be flexibly integrated to tackle real-

world complexity. 

Conclusion 

Semantic Information Theory has matured into an indispensable interdisciplinary field linking 

mathematics, artificial intelligence, linguistics, cognitive science, and complex systems research, yet it 

remains under active development. Classic challenges—the gap between raw data and meaningful content, 

the insufficiency of purely syntactic measures, and the absence of a widely accepted general theory of 

information—are being addressed from multiple complementary directions. Fuzzy logic and possibility 

theory offer rigorous tools to represent graded membership, vagueness, and context, allowing natural 

language descriptions, expert judgments, and incomplete observations to be encoded as fuzzy sets and 

possibility distributions instead of forced into crisp probabilistic models. Zadeh’s restriction-based 

paradigm further reframes information as generalized constraints of the form “X is R,” and, when 

combined with measures such as specificity, similarity, and proximity, enables systematic analysis and 

fusion of heterogeneous sources of semantic content in hybrid human–machine environments. Parallel 

developments in semantic generalizations of Shannon theory, ecological models of information–

knowledge–intelligence, and evidence-based approaches such as Dempster–Shafer theory collectively 

point toward a unified account of information that can accommodate syntax, meaning, utility, and multiple 

kinds of uncertainty within a single conceptual framework. There remains, however, a clear need for 

deeper formalization, empirical validation on large-scale real-world systems, and tighter integration with 

modern machine learning and cognitive architectures, especially as semantic communication systems, 
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autonomous agents, and socio-technical infrastructures become more complex, adaptive, and context 

dependent. 
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