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ABSTRACT 

Accurate crop identification is crucial for effective agricultural monitoring, resource planning, and 

sustainable farming. This study evaluates the performance of four vegetation indices—Normalized 

Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), 

Enhanced Vegetation Index (EVI), and Soil-Adjusted Vegetation Index (SAVI)—derived from 

Harmonized Landsat and Sentinel-2 (HLS) imagery for crop classification in Mahalaxmikheda village, 

Gangapur Tehsil, Chh. Sambhajinagar District, India. The indices were calculated for three different dates 

during the crop-growing season and combined into a multitemporal dataset. The random Forest (RF) 

algorithm was employed for supervised classification, and the results were validated against ground truth 

data collected through field visits. The accuracy assessment revealed that EVI achieved the highest overall 

accuracy (97.97%) and kappa coefficient (0.97), followed by SAVI (97.35% and 0.96), GNDVI (94.84% 

and 0.92), and NDVI (90.90% and 0.87), respectively. The superior performance of EVI and SAVI can be 

attributed to their ability to minimize soil background effects and atmospheric influences, thereby 

capturing crop-specific variations more effectively. The integration of the ground truth data further 

strengthened the classification results by reducing errors and improving the reliability of the RF model. 

These findings suggest that EVI and SAVI are more robust indices for crop identification in heterogeneous 

agricultural landscapes than NDVI and GNDVI are. This study highlights the potential of these indices to 

enhance precision agriculture applications, such as crop monitoring, management, and yield estimation, 

contributing to more sustainable agricultural practices. 

 Keywords:  Crop identification, Vegetation indices, NDVI, GNDVI, EVI, SAVI, Random Forest 

1. Introduction 

Agriculture serves as the foundation for food security and rural livelihood in numerous regions globally. 

Precise crop identification is essential for agricultural monitoring because it enables policymakers, 

researchers, and farmers to understand cropping patterns, forecast yields, and efficiently plan resource 

allocation[1].Access to timely information regarding crop types and distribution aids in the scheduling of 

irrigation, fertilizer application, and pest management, thereby enhancing productivity and fostering 

sustainable agricultural practices.  Traditional approaches to crop identification primarily utilize ground-

based surveys. Although these methods are accurate, they are labor-intensive, time-consuming, and 
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challenging to implement over large areas[2]. Recent advancements in satellite remote sensing have 

facilitated the efficient and frequent monitoring of agricultural regions on both regional and global scales. 

Remote sensing offers valuable spectral and temporal data, enabling the differentiation of crop types based 

on their distinct growth characteristics and phenological stages[3]. 

Vegetation indices are extensively utilized in crop identification studies because they enhance vegetation 

signals by minimizing the background noise from atmospheric and soil conditions. Among these, the 

Normalized Difference Vegetation Index (NDVI) is the most commonly employed, offering insights into 

plant vigor and biomass. However, NDVI is limited in areas with dense canopy cover and soil background 

effects[4]. To address these issues, other indices have been developed, such as the Green Normalized 

Difference Vegetation Index (GNDVI), which highlights chlorophyll content; the Enhanced Vegetation 

Index (EVI), which increases sensitivity in regions with high biomass; and the Soil-Adjusted Vegetation 

Index (SAVI), which adjusts for ground brightness effects in sparse vegetation conditions. Although these 

indices are extensively utilized for agricultural monitoring, their effectiveness in crop identification differs 

depending on the region and the cropping system. Consequently, a systematic evaluation of NDVI, 

GNDVI, EVI, and SAVI is necessary to identify the most suitable indices for a specific study area[5]. 
This study aims to evaluate and compare the performance of NDVI, GNDVI, EVI, and SAVI for crop 

identification in Mahalaxmikheda Village. These indices were derived from satellite images, and their 

classification accuracy was assessed using the overall accuracy and kappa statistics. These findings offer 

insights into the effectiveness of various vegetation indices and identify the most reliable method for crop 

identification in heterogeneous agricultural landscapes. 

 

2. Literature Review 

Remote sensing has become an essential tool for monitoring agriculture, particularly for crop identification 

and yield evaluation. Vegetation indices (VIs) derived from multispectral satellite imagery are widely used 

to evaluate crop health, canopy density, and growth stages. Among these, the Normalized Difference 

Vegetation Index (NDVI) is the most established and commonly used. It effectively distinguishes 

vegetation from bare soil and other land features because of the significant contrast between the red and 

near-infrared reflectance. However, NDVI is prone to interference from soil background and canopy 

saturation in densely vegetated areas, which limits its accuracy in diverse agricultural landscapes[6] 

Multispectral data-derived vegetation indices have been extensively utilized for the monitoring and 

classification of crops. Among these, the Normalized Difference Vegetation Index (NDVI) is the most 

commonly used because of its effectiveness in distinguishing vegetation from bare soil[7]. Nevertheless, 

NDVI's sensitivity of the NDVI to soil reflectance and canopy saturation can compromise its precision in 

areas with dense vegetation. To overcome these limitations, the Soil-Adjusted Vegetation Index (SAVI) 

was created to reduce the influence of the soil background[8], while the Enhanced Vegetation Index (EVI) 

enhances sensitivity in regions with high biomass by incorporating adjustments for atmospheric and soil 

conditions[9]. Similarly, Green NDVI (GNDVI) increases sensitivity to chlorophyll by replacing the red 

band with a green band[10]. These indices collectively enhance vegetation monitoring, particularly in 

heterogeneous agricultural settings. In addition to spectral indices, classification algorithms are vital for 

crop identification. Random Forest (RF) has become one of the most effective classifiers because of its 

robustness, non-parametric design, and capability to manage multidimensional datasets[11]. RF constructs 

multiple decision trees and employs majority voting to improve the classification accuracy[12]. Research 

utilizing Sentinel-2 data has demonstrated that integrating vegetation indices with RF achieves accuracies 

exceeding 90% for crop mapping[13]. Moreover, multitemporal approaches, which incorporate indices 

from various growth stages, enhance the ability to distinguish between crop types[14]. Overall, the 
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literature suggests that indices such as EVI and SAVI, when combined with RF and multidate imagery, 

deliver reliable and accurate crop classification results in diverse agricultural landscapes. 

 

3. Methodology 

The methodology employed in this study is defined in Fig. X. The process was initiated with the 

acquisition of Harmonized Landsat and Sentinel-2 (HLS) imagery, followed by pre-processing procedures 

such as layer stacking and clipping to the Area of Interest (AOI). Vegetation indices, including NDVI, 

GNDVI, EVI, and SAVI, were derived for three distinct dates using the Sentinel-2 spectral bands. These 

index layers were subsequently integrated to form a multitemporal dataset. These layers were used as input 

features for crop classification via the Random Forest (RF) algorithm, which constructs an ensemble of 

decision trees to enhance the classification accuracy. The final phase involved an accuracy assessment 

using ground-truth data, wherein the overall accuracy and kappa coefficients were computed to evaluate 

the performance of each index. 

 

 
 

 

Fig.1.  Methodological workflow of the study. 

3.1 Study Area 

This study was conducted in Mahalaxmikheda village(19.82°N, 75.03°E), Gangapur Tehsil,Chh. 

Sambhajinagar district, Maharashtra. The region lies in a subtropical climate zone with hot summers, a 

distinct monsoon season from June to September, and mild winters. Rainfall primarily depends on the 

southwest monsoon, which plays an important role in crop growth and productivity. The region is 

primarily agricultural, with fertile lands that support the cultivation of key crops, such as cotton, sweet 

lime, corn, wheat, and sugarcane. Both dryland and irrigated farming techniques are employed, creating a 
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diverse landscape that is well suited for remote sensing-based agricultural studies. Geographically, the 

study site is situated within the jurisdiction of the Upper Jayakwadi Dam, which supplies irrigation to the 

adjacent agricultural lands. These lands comprise small-to medium-sized plots, which are characteristic of 

the region's typical farming practices. The variety of crops, soils, and cultivation methods make 

Mahalaxmikheda an ideal location for evaluating plant indices for crop identification. 

 

Fig.2 Study Area 

3.2.1Data Collection and Band Selection 

In this study, satellite imagery was sourced from the Harmonized Landsat and Sentinel-2 (HLS) dataset 

developed by NASA to deliver consistent, high-resolution, and frequent observations for land surface 

monitoring. The HLS product integrates Landsat-8 Operational Land Imager (OLI) data with Sentinel-2 

Multispectral Instrument (MSI) data, ensuring compatibility in radiometry and geometry[15]. This 

integration facilitates the creation of a dense time series with a spatial resolution of 30 m and a revisit 

frequency of 2–3 d, making it highly suitable for agricultural monitoring. Cloud-free images 

corresponding to the crop growth stages were selected for August, October, and November 2024. These 

images were acquired in the surface reflectance format, which incorporates atmospheric corrections to 

ensure accurate spectral values for vegetation analysis, covering the visible to shortwave infrared (SWIR) 

range. Six bands were selected, namely B2, B3, B4, B8A, B11, and B12. These bands are important for 

farming. They help study plants, identify crops, and find water and soil problems.[16]. The pertinent 

spectral bands, blue, green, red, and near-infrared (NIR), were extracted and subsequently processed in 

QGIS for the computation of vegetation indices[17]. 

Table.1.Information of bands 

Band Sensor 
Wavelength Range 

(nm) 

Application in This 

Study 

Blue 
B2 (Sentinel-2) / B2 

(Landsat-8) 
450 – 515 

Used in EVI to 

correct atmospheric 

influences 

Green 
B3 (Sentinel-2) / B3 

(Landsat-8) 
525 – 600 

Used in GNDVI to 

estimate chlorophyll 

content 

Red 
B4 (Sentinel-2) / B4 

(Landsat-8) 
630 – 680 

Used in NDVI, EVI, 

and SAVI to assess 

vegetation vigor 

NIR (Near 

Infrared) 

B8 (Sentinel-2) / B5 

(Landsat-8) 
845 – 885 

Used in all indices 

(NDVI, GNDVI, 
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EVI, SAVI) for 

vegetation 

monitoring 

 

3.2.2Ground Truth Data  

Ground truth data were gathered to aid the training and validation of the classification results. Field visits 

were conducted during the crop-growing season to document information on crop type, growth stage, and 

field boundaries in selected agricultural plots within Mahalakshumikheda, Gangapur Tehsil, Chh. 

Sambhajinagar District, Maharashtra State, India. In Fig.2, the locations of the sample fields are recorded 

using a handheld GPS device, and a GPS-enabled camera is used to capture the geo-tagged photographs. 

A total of 150 samples were collected across five major classes: Cotton, Sugarcane, Sweet lime, Water, 

and Other land uses, which were subsequently used for both the training and validation of the classification 

process. 

 

Fig.3 Ground Truth Data 

4. Experimental Approach 

This study followed a systematic experimental workflow for crop identification and classification using 

multidate HLS satellite data. The workflow included data pre-processing, preparation of vegetation index 

layers, classification, and accuracy assessment. 

 

4.1 Pre-Processing 

The satellite images utilized in this study have already undergone atmospheric and radiometric corrections, 

effectively reducing the impact of atmospheric scattering and sensor-related distortions[18]. To prepare 

the data for further analysis, a layer stacking technique was employed to merge the necessary spectral 

bands into a single composite image.The following fig shows the layer stack image of three different 

dates.These bands were merge into single multi-band raster contating 18 layers. Subsequently, the dataset 

was clipped to the Area of Interest (AOI) encompassing Mahalakshumikheda, Gangapur Taluka, and 

Sambhajinagar districts, as shown in Fig.2. These pre-processing steps ensured spatial consistency and 

provided a dependable dataset for calculating and classifying vegetation indices. 

CompositImage = Stack(B1
t1, B2

t1, … . B1
t2, B2

t2
2

, … . , Bn
t2, B1

t3, B2
t3, … , Bn

t3) … … (1) 

 

Where B1
t1, B2

t1, … . B1
t2, B2

t2
2

, … . , Bn
t2, B1

t3, B2
t3, … , Bn

t3    represent the selected bands of 

(Red,Green,Blue,NIR and SWIR) from three different dates (early, mid, and late season observations), 

and Stack () is a band-compositing function that merges multiple spectral bands into a single multi-band 

raster dataset. 
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Fig.4 Layer stack Image of AOI 

4.2 Vegetation Indices Calculation 

To discriminate different crop types in the study area, four widely used vegetation indices were derived 

from the Harmonized Landsat and Sentinel-2 (HLS) dataset. The required spectral bands included Blue 

(B2, 490 nm), Green (B3, 560 nm), Red (B4, 665 nm), Near Infrared – NIR (B8A, 865 nm), Shortwave 

Infrared 1 – SWIR1 (B11, 1610 nm), and SWIR2 (B12, 2190 nm). Since the imagery was already 

atmospherically and radiometrically corrected, band reflectance values were directly used for index 

calculation[19]The following indices were computed for three different dates by applying the 

corresponding formulas in the QGIS Raster Calculator: 

4.2.1.Normalized Difference Vegetation Index (NDVI): 

The Normalized Difference Vegetation Index (NDVI) uses the contrast between near-infrared (B8A) and 

red (B4) reflectance to measure vegetation vigor. Healthy plants reflect more NIR and absorb red light, 

making NDVI effective for detecting vegetation presence, though it tends to saturate in dense canopies 

and is sensitive to soil background[20] 

NDVI =
B8A − B4

B8A + B4
 

 

Where, B8A represent Narrow NIR and B4 represent Red 

The NDVI is a robust indicator of vegetation vigor and biomass, with higher values representing dense 

and healthy vegetation[21]. 

 

4.2.2.Green Normalized Difference Vegetation Index (GNDVI): 

The Green Normalized Difference Vegetation Index (GNDVI) modifies NDVI by replacing the red band 

with the Green band (B3). This makes it more sensitive to chlorophyll concentration and plant stress, 

offering better detection in early growth stages, but it is still influenced by soil effects[22]. 

 

 

GNDVI =
B8A − B3

B8A + B4
 

 

Where , B8A represent Narrow NIR and B3 represent Green 
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GNDVI is more sensitive to chlorophyll concentration and is useful for detecting crop stress at early 

stages[21, 22]. 

 

4.2.3.Enhanced Vegetation Index (EVI): 

The Enhanced Vegetation Index (EVI) reduces atmospheric and soil background noise by including the 

blue band (B2) along with the correction factors. The gain factor (2.5), red correction (6×B4), blue 

correction (–7.5×B2), and canopy adjustment constant (1) make EVI more effective in high biomass 

regions where NDVI saturates. 

 

EVI = 2.5 ×
(B8A − B4)

(B8A + 6 × B4 − 7.5 × B2 + 1)
 

Where, B8A represent Narrow NIR ,B4 represent Red and B2 represent Blue 

EVI improves sensitivity in high-biomass regions and reduces the influence of soil and atmospheric 

effects[20–22]. 

 

4.2.4.Soil-adjusted vegetation index (SAVI) 

The soil-adjusted vegetation index (SAVI) introduces a soil adjustment constant (L = 0.5) into the NDVI 

formula. This correction minimizes the influence of soil brightness, making SAVI more reliable in areas 

with sparse vegetation and mixed crop-soil conditions. 

    

SAVI =
(B8A − B4)

(B8A + B4 + 0.5)
× 1.5 

 

Where, B8A represent Narrow NIR and B4 represent Red 

SAVI minimizes soil background noise, making it suitable for areas where vegetation is sparse or fields 

are exposed to soil[23]. These vegetation indices were calculated separately for each date, generating 12 

index layers (NDVI, GNDVI, EVI, and SAVI for the three dates). 

 

4.3 Preparation of Multitemporal Index Layers 

Vegetation indices were calculated using data from Harmonized Landsat and Sentinel-2 (HLS) for three 

different dates during the crop-growing season. The indices used were the NDVI, GNDVI, EVI, and SAVI. 

These were derived from the HLS spectral bands: blue (B2), green (B3), red (B4), and Narrow Near-

Infrared (B8A). Each index was created separately for all three dates to observe the changes in crop 

growth. The resulting data were combined using the Layer Stack tool in QGIS to form a single dataset 

with multiple bands for each date. These combined layers maintain both spectral and time-related details, 

providing a complete dataset for further classification and accuracy checks. 

 

                    Fig. 5. Multitemporal vegetation index layer stack generated using QGIS. 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 
E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25049800 Volume 16, Issue 4, October-December 2025 8 

 

The figure.4. shows the stacked layers of the NDVI, GNDVI, EVI, and SAVI. These layers were created 

from Harmonized Landsat and Sentinel-2 (HLS) data for three different dates. The stack combines spectral 

and temporal information, providing a complete dataset for studying and classifying crops. 

4.4 Classification 

In remote sensing, classification involves assigning each pixel in an image to a specific land cover or crop 

category based on its spectral and temporal characteristics. This process can be broadly categorized into 

unsupervised and supervised approaches[24]. Unsupervised classification groups pixels into clusters 

based on spectral similarity without prior knowledge of land-cover types. 

 By contrast, supervised classification utilizes reference data to guide the algorithm in identifying known 

classes. Supervised classification is generally favored in agricultural studies because it enables the precise 

mapping of specific crops by incorporating field knowledge and ancillary data[25]. 

In this study, the Random Forest (RF) algorithm was utilized for supervised classification. RF is a machine 

learning method based on ensembles that creates several decision trees from random subsets of data and 

combines their results to improve the classification precision. Each tree votes for a class, and the class 

with the most votes is chosen as the final result[26]. 

The mathematical representation of the Random Forest prediction is given as: 

ŷ = mode {h1(x), h2(x), h3(x) … . . , hn(x)} 

Where, 

ŷ =final predicted class, 

hi(x) =prediction of the ith decision tree, 

n=total number of decision trees in the forest. 

 

This method is particularly effective for remote sensing, as it adeptly handles high-dimensional datasets, 

mitigates overfitting, and captures intricate relationships among vegetation indices[27]. By applying RF 

to the multitemporal vegetation index stack (NDVI, GNDVI, EVI, and SAVI), crop classification maps 

were produced to illustrate the distribution of cotton, sugarcane, sweet lime, water, and other land-cover 

classes within the study area. 

 

 

 

Fig. 6. Classified crop map generated using Random Forest algorithm. 
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Fig. 5 illustrates the spatial distribution of the predominant crop types and other land-cover categories 

within the Mahalakshumikheda study area, as identified through multitemporal vegetation indices. 

5.Result 

This section presents the results from classifying HLS-derived vegetation indices, including NDVI, 

GNDVI, EVI, and SAVI. Each index was assessed for its effectiveness in distinguishing major crop 

classes—cotton, sugarcane, and sweet lime—as well as water and other land-use categories. 

5.1Accuracy Assessment 

The accuracy of the classification results was assessed using a confusion matrix that was used to determine 

the overall accuracy (OA) and kappa coefficient (κ). These metrics provide information on the percentage 

of correctly classified pixels and the degree of agreement between the classified data and reference data, 

beyond chance. The results highlighted variations in performance among the vegetation indices. The 

Enhanced Vegetation Index (EVI) achieved the highest accuracy, with an overall accuracy of 97.97% and 

a kapp value of 0.97, indicating excellent classification reliability. The Soil Adjusted Vegetation Index 

(SAVI) also performed admirably, with an overall accuracy of 97.35% and a kappa value of 0.96. The 

Green Normalized Difference Vegetation Index (GNDVI) recorded an overall accuracy  of 94.84% and 

kappa of 0.92, whereas the Normalized Difference Vegetation Index (NDVI) demonstrated comparatively 

lower accuracy, with an overall accuracy of 90.90% and kappa of 0.87.The following table shows a 

comparison of the vegetation indices for crop classification. 

    Table 1. Accuracy assessment of crop classification using NDVI, GNDVI, EVI, and SAVI. 

Vegetation Index 
Overall Accuracy (OA, 

%) 

Kappa Coefficient 

(κ) 

NDVI 90.90 0.87 

GNDVI 94.84 0.92 

EVI 97.97 0.97 

SAVI 97.35 0.96 

 

5.2Results and Discussion 

The analysis of vegetation indices derived from HLS imagery revealed noticeable differences in the 

classification performance of crop identification in the study area. NDVI and GNDVI were effective in 

detecting vegetation presence but showed moderate accuracy owing to their sensitivity to soil background, 

atmospheric effects, and canopy saturation, especially in areas of dense vegetation. In contrast, EVI and 

SAVI achieved significantly higher accuracies. The stronger performance of these indices can be attributed 

to their ability to minimize external influences, which reduces soil background effects by incorporating a 

soil adjustment factor, making them particularly useful in fields with partial or sparse vegetation, while 

EVI applies correction coefficients that counteract atmospheric scattering and reduce saturation problems 

in high biomass regions. These characteristics enable EVI and SAVI to capture crop-specific variations 

more effectively, particularly for cotton, sugarcane, and sweet lime. 

https://www.ijsat.org/
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Fig. 7: Temporal fingerprints of different vegetation indices (NDVI, GNDVI, EVI, SAVI) for major crops 

in the study area across three time periods (August, October, and November). The Y-axis represents the 

vegetation index values (–1 to +1), while the X-axis shows the observation dates. 

Fig. 7 illustrates the fingerprint line graphs of NDVI, GNDVI, SAVI, and EVI for cotton, sugarcane, and 

sweet lime. The temporal patterns reveal that while NDVI and GNDVI capture overall vegetation 

dynamics, they exhibit overlapping trends among crop types, which diminishes their separability. 

Conversely, SAVI and EVI offer clearer distinctions, especially during peak growth stages, due to their 

ability to minimize soil background effects and saturation issues. Notably, EVI demonstrates the strongest 

separability between crops, corresponding with its higher classification accuracy (97.97%, Kappa 0.97). 

This indicates that EVI effectively enhances crop-specific spectral responses by correcting for canopy 

density and atmospheric effects, whereas SAVI improves performance in heterogeneous fields by 

accounting for soil reflectance. These findings confirm that indices incorporating correction factors, such 

as EVI and SAVI, provide more reliable crop discrimination than NDVI and GNDVI. 

The integration of the ground truth data further strengthened the classification results. Field observations 

collected using a GPS camera ensured that crop types were correctly represented in the training and 

validation processes. By providing accurate reference points, the ground truth data reduced the 

classification errors, improved the reliability of the Random Forest model, and validated the superior 

performance of EVI and SAVI over NDVI and GNDVI. This demonstrates that the combination of remote 

sensing indices and field-based observations can provide robust and realistic outcomes for agricultural 

crop mapping in heterogeneous landscapes. 

6.Conclusion 

This study explored the efficacy of vegetation indices derived from Harmonized Landsat and Sentinel-2 

(HLS) data for accurate crop identification in Mahalakshumikheda, Gangapur Tehsil, Chh. Sambhajinagar 

District, India. This study evaluated four vegetation indices, NDVI, GNDVI, EVI, and SAVI, through 

supervised classification, with validation against ground truth data obtained from field visits. The analysis 

demonstrated that NDVI (Overall Accuracy: 90.90%, kappa: 0.87) and GNDVI (Overall Accuracy: 

https://www.ijsat.org/
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94.84%, kappa: 0.92) were proficient in capturing broad vegetation patterns, but were hindered by issues 

related to soil reflectance sensitivity and canopy saturation. In contrast, the EVI (Overall Accuracy: 

97.97%, kappa: 0.97) and SAVI (Overall Accuracy: 97.35%, kappa: 0.96) exhibited superior classification 

accuracy. The inclusion of a soil adjustment factor in SAVI and atmospheric correction in EVI significantly 

improved their ability to reduce background noise and saturation effects, yielding results that were more 

consistent with the field-verified ground truth data. These findings suggest that EVI and SAVI are more 

robust and dependable indices for crop identification in diverse agricultural landscapes than NDVI and 

GNDVI. These indices have the potential to enhance precision agriculture applications by improving crop 

monitoring, management, and yield estimation, thereby contributing to more sustainable agricultural 

practices. 
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