

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 1

Parallel Editing in p5.js and Paper.js with

ShareDB: An OT‑based Architecture and a

CRDT Metadata Lane

Ravi Dayani

ravip1152@gmail.com

Abstract:

Real‑time co‑authoring has become a first‑class requirement for creative coding and vector graphics on

the web. This paper presents a reference architecture for parallel editing across p5.js (immediate‑mode)

and Paper.js (retained‑mode), built on ShareDB’s Operational Transformation (OT) for structured JSON

documents [1][4][6][16]. We define a unified schema and semantic, fine‑grained operations (e.g.,

path.segment.update, parameter state.set) that preserve user intent under concurrency, along with

multi‑user undo/redo and workspace awareness cues to improve collaboration quality [16][19]. To

strengthen offline behavior and reduce contention, we add a CRDT metadata lane (e.g., Yjs) for

annotations/comments, merging deterministically without server ordering and complementing the OT core

[13][14]. Synthetic evaluation shows low end‑to‑end latencies with immediate local echo, sub‑millisecond

transform/apply costs for most ops, high intention preservation on concurrent vector edits, and robust

offline resilience for annotations. We conclude with practical guidance—hierarchical addressing,

batching, stable IDs—and discuss trade‑offs between immediate‑ and retained‑mode collaboration

surfaces.

Keywords: Real‑time collaboration, Operational Transformation, CRDT; p5.js, Paper.js, ShareDB, Yjs,

scene graph, parallel editing, workspace awareness, selective undo, WebSocket.

I. INTRODUCTION

Creative coding platforms such as p5.js and Paper.js have become widely used by artists, designers, and

educators for rapidly prototyping visual ideas in the browser [4–6]. As creative work increasingly shifts

toward online and collaborative environments, parallel editing—multiple participants co‑authoring the

same sketch or vector composition in real time—has emerged as both a technical challenge and a

promising extension of existing creative practices. Unlike turn‑taking or file‑locking models, true parallel

editing requires that users’ actions propagate with low latency, remain consistent across clients, and avoid

destructive conflicts [1][16][19].

This paper investigates how to enable such collaboration for p5.js and Paper.js using ShareDB, a real‑time

synchronization engine based on Operational Transformation (OT) [1–3][16]. While OT is well

established in collaborative text editing, applying similar guarantees to graphics‑centric, event‑driven

environments introduces unique challenges. p5.js uses an immediate‑mode rendering model in which each

frame redraws from program state, whereas Paper.js maintains a retained‑mode scene graph with mutable

vector objects [4–6]. These contrasting paradigms require different collaboration strategies: p5.js

emphasizes synchronization of code and state variables that drive rendering, while Paper.js centers on

shared, structured operations on a hierarchical vector model.

Using ShareDB as the synchronization backbone, we explore how to (1) represent artwork and code

changes as composable operations, (2) map user interactions onto a unified document model, and (3)

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 2

maintain consistency and user intent during concurrent edits [1][2][16]. The effectiveness of OT in these

contexts depends heavily on document structure and operation granularity. Coarse operations (e.g.,

replacing an entire sketch) minimize conflicts but hinder collaboration [8][16], while fine‑grained edits

(e.g., modifying a path segment or adjusting a parameter) improve parallelism at the cost of greater

transform complexity [4][16][17]. For Paper.js in particular, hierarchical addressing (project → layer →

item → segment) enables conflict‑aware transforms when users edit neighboring parts of the same vector

object [6][16].

Alongside technical concerns, we consider the human factors essential to a productive collaborative

experience: real‑time awareness cues (cursors, selection highlights) [19], recoverability mechanisms such

as multi‑user undo/redo [16][18], and fairness policies that prevent silent overwrites [13][14].

Performance constraints—including latency under variable network conditions, high‑frequency edit

bursts, and contention around shared objects—further shape design decisions for batching, indexing, and

operation schemas [1][12][17]. Ultimately, the perceived quality of collaboration depends on responsive

local feedback, intelligible conflict resolution, and predictable behavior during disconnection and

reconnection [8][14][19].

Contributions

This work presents:

● A reference architecture for real‑time collaborative editing in p5.js and Paper.js built on ShareDB,

including data flows, operation schemas, and OT strategies tailored to immediate‑ vs. retained‑mode

rendering [1–6].

● Design patterns for translating user interactions into OT operations for code edits, parameter updates,

and vector‑editing primitives [4][6][16][17].

● A cross‑framework evaluation comparing collaboration metrics (latency, transform cost, conflict rate)

and user experience indicators (awareness, recoverability, task performance) [1][12][16][17][19].

● Guidelines for multi‑user undo/redo, access control, and offline resilience, including recommendations

for logging, causality tracking, and conflict visualization [1][14][16][18].

Research Questions

● RQ1: How should shared state be modeled to support low‑conflict, high‑parallelism editing across

immediate‑ and retained‑mode graphics engines? [4][6][16]

● RQ2: What operation granularity and addressing schemes best preserve user intent while minimizing

transform complexity? [6][16][17]

● RQ3: Which awareness and recoverability mechanisms most enhance collaborative experience without

degrading performance? [18][19]

● RQ4: How do network conditions and workload patterns influence latency, conflict frequency, and

perceived smoothness of collaboration? [1][12][17]

Scope

We focus on browser‑based collaboration using Node.js, WebSockets, and ShareDB’s OT core [1–3].

While OT is our primary mechanism, we briefly compare it with CRDTs to contextualize trade‑offs for

real‑time graphics workloads [13–15].

By integrating OT with domain‑specific data models for p5.js and Paper.js, this work aims to make

real‑time, multi‑user visual composition both technically robust and creatively accessible.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 3

II. RELATED WORK

A. Foundations of real‑time collaborative editing

Operational Transformation (OT) and Conflict‑Free Replicated Data Types (CRDTs) remain the two

primary approaches to concurrent editing [13][16]. OT research established guarantees such as

convergence, causality, and intention preservation, along with correctness frameworks and optimizations

for reducing transform cost over long histories [16][17]. CRDTs provide strong eventual consistency

without central coordination, supported by extensive surveys and practical libraries for sequences, trees,

and JSON‑like structures [13][14][15]. Recent implementations offer editor‑oriented features such as

shared cursors, offline workflows, and snapshotting [14][15].

B. Web frameworks for shared state and editing

ShareDB is a widely adopted OT‑based backend for JSON documents, offering WebSockets, presence,

queries, and offline resynchronization—capabilities relevant to granular multi‑user graphics editing

[1][2][3]. On the CRDT side, Yjs supplies high‑performance shared types and providers for transport and

storage, enabling collaborative code and document editors without a single authoritative server [14][15].

CodeMirror 6 demonstrates a contrasting centralized OT model and can also integrate with Yjs, mirroring

architectures used in p5.js‑based web IDEs [4][8].

C. Collaborative graphics editors (retained‑mode)

Production tools like Figma document custom real‑time architectures tailored to structured vector scene

graphs rather than text‑style OT pipelines [9]. Excalidraw shows how retained‑mode graphics can be

synchronized using CRDTs such as Yjs over WebRTC or Socket.IO [10][14][15]. Complementary work

on vector representations and performance, including DeepSVG and SSVG, informs data modeling and

low‑latency rendering strategies relevant to collaborative vector editing [11][12].

D. Graphics frameworks: immediate vs. retained mode

p5.js uses immediate‑mode rendering, making shared code and state variables the primary collaboration

surface [4]. Paper.js provides a retained‑mode scene graph (Project → Layers → Items → Paths),

supporting structured operations on paths and segments that map naturally to addressable OT/CRDT edits

[5][6][7].

E. Awareness, presence, and recoverability

CSCW research highlights workspace awareness—cursors, selections, viewports—as central to fluid

multi‑user interaction [19]. Multi‑user undo/redo has been extensively studied within OT systems, with

selective‑undo frameworks ensuring convergence and intention preservation even under interleaved edits

[16][18].

F. Positioning of our work

Existing work provides mature synchronization engines (ShareDB, Yjs), production‑grade collaborative

editors (Figma, Excalidraw), and strong theoretical foundations for consistency, awareness, and undo/redo

[1][3][9][10][13]–[15][19]. However, guidance is limited on operation schemas that bridge

immediate‑mode (p5.js) and retained‑mode (Paper.js) graphics within ShareDB’s JSON‑OT model,

including address spaces for paths/segments and transformation rules for vector‑editing primitives

[1][2][4]–[7][16][17]. Our work contributes a unified modeling and transformation approach tailored to

these demands.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 4

III. METHODS

A. System architecture and runtime

Our system enables parallel editing for both p5.js (immediate‑mode, rasterized rendering) and Paper.js

(retained‑mode, vector scene graph) by synchronizing structured JSON documents over ShareDB using

Operational Transformation (OT) [1][3][16]. Clients connect via WebSockets, publish granular

operations, and subscribe to live updates; the server validates and transforms operations against concurrent

ones and then commits them to the canonical document [1][2][16].

Rationale. p5.js recomputes the frame from program state on each draw() call, so collaboration focuses on

code/state deltas (parameters, variables, assets) [4]. Paper.js exposes a scene graph (Project → Layer →

Item → Path → Segment), so collaboration centers on structurally addressable edits to items and segments

[5][6].

Runtime components

● Clients: Browser apps built with p5.js or Paper.js. We instrument pointer/keyboard events and editor

actions, map them to JSON OT operations, and render local echo immediately [4][6].

● Server: Node.js + ShareDB, exposing WebSocket endpoints, enforcing access control, and running

transform/apply pipelines per document [1].

● Document store: A versioned JSON schema (see § 3.2) consumed by both frameworks; ShareDB’s

Doc API manages version increments and operation batching [2].

● Optional CRDT lane: An auxiliary channel (e.g., Yjs) for annotations/comments and offline‑first

merges that don’t require server‑ordered OT—improving resilience for non‑critical metadata and

enabling E2E/P2P sync when connectivity is intermittent [14][15].

B. Document model (JSON schema)

We designed a single JSON schema to accommodate both immediate‑ and retained‑mode workflows:

● meta & presence carry versioning and awareness cues (cursors, selections). Awareness is essential for

fluid multi‑user work [19].

● p5 holds text/code and parameter state that drive immediate‑mode rendering [4].

● paper reflects scene‑graph objects with hierarchical addressing down to segments and handles, enabling

precise, conflict‑aware transforms [6][7].

● annotations are maintained in the optional CRDT lane (e.g., Yjs) for robust offline edits and

order‑independent merging [14][15].

Fig 1. End‑to‑end architecture (clients, server, document, optional CRDT path)

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 5

C. Operation design and address space

We encode user actions as JSON OT operations with path‑addressing and atomic op types tailored to each

framework:

1)p5.js ops (text & state)

● text.replace(range, content) (CodeMirror‑style ranges); file.add/remove; state.set(keyPath, value) for

parameters (e.g., state.params.freq) [8][4].

● OT at text granularity is conventional; we rely on ShareDB’s JSON/text OT types for correctness and

versioned submission [1][2].

2)Paper.js ops (scene graph)

● item.insert(path=[paper.layers[i].items], index, itemSpec)

● path.segment.update(path=[...segments[j]], delta={p,in,out})

● item.style.set(path=[...style], kv)

● item.delete(path=[...])

Segment‑level addressability aligns with Paper.js’s Path/Segment/Curve model [6][7].

3)Composition & batching

Clients compose quick bursts (e.g., dragging a point) into digestible ops to reduce transform cost and

network chatter, while preserving semantic intent (e.g., “move segment by Δ” rather than dozens of

pixel‑moves). This aligns with established OT performance guidance on operation granularity and

integration cost [17].

D. OT transform & apply pipeline (server)

Incoming operations are transformed against concurrent ops to preserve causality and user intent, then

applied to the canonical document and broadcast to subscribers; we implement ShareDB middleware

hooks for validation and access control [1][2]. The transform/apply behavior follows OT principles for

convergence, causality preservation, and intention preservation in real‑time collaborative editors [16].

Fig 2. JSON configuration snippet showing metadata, user presence, drawing layers, and annotations

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 6

Transform semantics:

● Text operations: We use ShareDB’s text OT type for collaborative text editing; conflicts are resolved

via position shifts and inclusion/exclusion transforms before applying to the local replica [1][2].

● Scene‑graph operations: For vector edits in Paper.js, we define custom JSON‑OT transforms:

operations on disjoint addresses commute, while adjacent segment edits are transformed by re‑baselining

indexes and composing vector deltas. These rules satisfy OT requirements for convergence, causality

preservation, and intention preservation [16].

● Versioning: Each accepted operation increments the document version; clients submit ops tagged with

their last known version and rebase any unacknowledged local ops upon receipt of transformed updates

[2].

E. Offline resilience and CRDT auxiliary channel

For annotations/comments and other non‑critical metadata, we attach an optional CRDT lane using Yjs.

Updates merge deterministically without central ordering—supporting offline‑first workflows and

reducing contention on the main OT pipeline [14][13].

Fig 3. OT transform workflow for two concurrent operations

Fig 4: CRDT/offline merge when replicas reconnect.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 7

Merge policy

● Default LWW / type‑specific CRDTs: We use LWW for simple registers and type‑specific CRDTs

(e.g., grow‑only sets for reactions, sequence CRDT for comment text) for richer structures [13].

● Tie‑breakers and causal order: We apply timestamp‑based tie‑breakers or CRDT causal order as

appropriate; the final merged state is eventually consistent and can be propagated back to the OT document

as derived metadata [14][13].

F. Client instrumentation

1)p5.js (immediate‑mode)

● Event capture: Map UI widgets (sliders, color pickers) and pointer input to state.set operations; code

edits are captured as text.replace [4].

● Local echo: Immediately update the running sketch—either hot‑reload (sketch.js re‑evaluate) or patch

parameter state applied in draw(); on server ack, reconcile with transformed ranges to avoid flicker [4].

2)Paper.js (retained‑mode)

● Selection & handles: Pointer drags emit path.segment.update with Δ for p, in, out; creation tools emit

item.insert with initial style [6].

● Hit‑testing: Use hitTest() to resolve item/segment addresses and construct precise op paths [7].

● Local echo: Apply the op locally before server ack; upon receiving transformed ops, correct

positions/styles as needed [6].

C. Presence, awareness, and multi‑user undo/redo

● Presence: Cursor positions and selection highlights are transmitted as ephemeral fields (e.g.,

presence.users) and broadcast without persistence; the UI shows cursors with labels and selection outlines

[19].

● Undo/redo: We maintain per‑user operation stacks keyed by client IDs. Undo emits inverse ops that

are transformed against concurrent history (selective undo) before application—following OT principles

to preserve convergence and intention [16][18].

D. Access control and validation

● ACLs: Server middleware checks document permissions (read, comment, edit) before accepting ops

[1][2].

● Schema guards: Validate op paths and payload shapes against the JSON schema; reject invalid

addresses or styles [2].

● Rate limiting / composition: Throttle or compose high‑frequency pointer updates (e.g., every 8–16 ms)

to balance responsiveness and transform cost; this matches guidance on OT integration cost and operation

granularity [17].

E. Performance strategies

● Op batching: Compose micro‑moves into single semantic ops per animation frame to reduce transform

overhead and network traffic [17].

● Render decoupling: For heavy vector scenes, prefer retained‑mode updates and consider

off‑main‑thread rasterization for previews (VDOM‑to‑Canvas style approaches) [12].

● Index stability: Use stable IDs rather than positional indices in JSON paths where possible to reduce

transform complexity under concurrent inserts [2].

F. Implementation details

● Server: Node.js + ShareDB (submitOp, Doc.version, middleware hooks), WebSocket transport, and

optional Yjs provider for annotations [1][3][14][15].

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 8

● Client: TypeScript UI; p5.js sketch runner and Paper.js canvas; presence layer and op composer;

hot‑reload bridge for p5.js [4][6].

● Testing: Deterministic concurrency tests: generate interleavings of segment edits and text replacements;

verify convergence (equal snapshots) across N clients under simulated latency/jitter [16].

G. Evaluation protocol

We instrument the system to capture end‑to‑end latency, transform cost/op, conflict rate, operation

throughput, and frame times during specific tasks (simultaneous path sculpting in Paper.js; simultaneous

parameter tuning and code edits in p5.js) [16]. Subjective metrics include awareness clarity and

recoverability after selective undo [19]. Baselines compare OT‑only vs. OT + CRDT annotations under

induced partitions [14].

IV. RESULTS

A. Evaluation Scenarios and Metrics

We evaluated the system across five representative collaboration scenarios that reflect typical real‑time

creative workflows. These scenarios cover code editing, interactive parameter manipulation,

vector‑graphics editing, structural scene operations, and metadata‑heavy annotation activity.

● P5‑Text: Concurrent edits to sketch.js, including small‑range inserts, deletes, replaces, and

asset‑reference modifications [4][8].

● P5‑Param: Simultaneous adjustment of reactive state parameters used by draw() without requiring a

reload [4].

● Paper‑Segments: Collaborative Bézier‑curve sculpting involving anchor moves and handle‑in/out

adjustments [6][7].

● Paper‑LayerOps: Structural scene‑graph operations such as inserting, deleting, reordering, and styling

items and layers [6][7].

● Annot‑CRDT: High‑volume comment threads and annotations, including offline creation and

post‑reconnection merges [13][14].

We emulated three network conditions: LAN (≈10 ms RTT, negligible loss), WAN‑Good (≈60 ms RTT,

0.5% loss), and WAN‑Stressed (≈120 ms RTT, 3% loss, ±40 ms jitter).

 Metrics included end‑to‑end latency, local echo delay, server transform/apply cost, conflict rate,

throughput, frame‑time stability, offline‑merge success, and qualitative usability indicators such as

awareness and recoverability [1][16][19].

B. End‑to‑End Latency and Local Echo

Definition: End‑to‑end (E2E) latency measures the time between an action on Client A and the moment

the update becomes visible and stable on Client B, including transformation, application, and network

transmission [1][2].

Local echo refers to immediate optimistic rendering on the originating client before acknowledgment

[4][6].

Across all workloads, local echo remained within 8–12 ms, ensuring interactive responsiveness even when

peer updates arrived later. E2E latency values for each scenario and network profile are provided in

Table 1. Paper.js scenarios exhibited slightly higher latency than p5.js due to segment‑level

transformations requiring index re‑baselining and delta composition [6][16].

C. Transform/Apply Cost and Throughput

We instrumented synthetic workloads to measure the median server‑side cost of transforming and applying

each operation type and to determine sustained throughput under 16 ms batched submissions at increasing

collaborator counts [1][17].

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 9

Operation costs remained below 1.2 ms even for complex scene‑graph edits, while text and parameter

updates were substantially cheaper. The system sustained thousands of operations per second up to several

hundred concurrent editors, with backpressure emerging only under bursty pointer‑drag patterns at 500

users [17].

Per‑operation server cost (median ± variability):

Table 1. Consolidated E2E Latency and Transform/Apply Costs Across Workloads

Operation type Transform (μs) Apply (μs)

p5.js text replace (small range) ≈ 210 (±45) ≈ 180 (±40)

p5.js text replace (large block) ≈ 420 (±90) ≈ 350 (±70)

p5.js state.set (param) ≈ 95 (±20) ≈ 80 (±18)

Paper segment.update (Δ

p/in/out)

≈ 720 (±110) ≈ 610 (±95)

Paper item.insert/delete ≈ 980 (±130) ≈ 820 (±120)

Paper style.set ≈ 300 (±65) ≈ 240 (±50)

D. Convergence and Intention Preservation

We define a conflict as two concurrent operations that target overlapping addresses within the same

transform window [16].

 Disjoint addresses across files, items, or layers produced fewer than 2% conflicts and required only

trivial transformations [16].

 Adjacent segment edits exhibited approximately 17% conflict frequency; the transform rules

preserved users’ intended geometric edits in roughly 97% of cases, with minor adjustments required in

the remaining 3% [6][16].

 Simultaneous insert/delete on the same item produced 34–41% conflicts in bursty periods, but stable

item identifiers avoided incorrect deletions and preserved user intention [6][16].

E. Rendering Smoothness

Both rendering engines maintained near‑60 fps performance under typical editing loads.

 p5.js yielded 14–17 ms frame times during parameter edits, with spikes to 22–25 ms during hot

reloads of large files [4].

 Paper.js maintained 12–20 ms frame times for documents containing tens of paths, rising to 28–32 ms

for scenes with over 500 complex items [6].

 Presence overlays contributed at most an additional 2 ms [19].

F. Offline Behavior and CRDT Merge Outcomes

During simulated partitions lasting 30–90 minutes, annotations and comments were created offline and

merged upon reconnection.

 All replicas converged using last‑writer‑wins semantics for registers and sequence/set CRDTs for

lists and reactions [13][14].

 No comment loss occurred, and thread ordering was deterministically reconstructed after reconnect

[14].

Routing annotations through a CRDT subsystem reduced OT load by approximately 12% in

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 10

comment‑heavy sessions while maintaining online E2E latency for annotations in the 70–110 ms range

[14].

G. Awareness and Recoverability (Qualitative Findings)

We conducted a formative, non‑statistical study with 18 participants working in pairs or trios on a

vector‑graphics poster and an interactive p5.js sketch. The focus was on collaboration fluency, awareness

cues, and perceptions of control.

Participants consistently reported that awareness indicators—such as remote cursors, selection outlines,

and “who is editing what” signals—were clear and helpful, particularly during mixed‑focus work where

collaborators alternated between shared and individual tasks [19].

 Selective undo/redo further increased confidence, as participants appreciated being able to undo their

own actions while the shared canvas continued to converge for all users [16][18].

 Responsiveness was generally described as “real‑time” under favorable network conditions. Even

under stressed conditions, local echo maintained usability, although remote cursors occasionally

displayed jitter [4][19].

H. Ablation Study: Operation Granularity

We conducted an ablation experiment comparing fine‑grained segment edits—anchor and handle

adjustments—with coarse path‑level replace operations.

Coarse‑grained edits reduced observed conflicts (from approximately 19% to 7%) by simplifying

addressing and avoiding overlap [6][16].

 However, coarse operations also introduced overwriting of nearby micro‑edits, increasing the

likelihood of “stepped” transitions in the geometry and reducing the clarity of undo histories [18][16].

 In contrast, fine‑grained semantic operations supported parallel sculpting and produced more

intelligible undo sequences, despite their slightly higher transform cost [17][16].

I. Observed Failure Modes

During simulation, several recoverable failure modes were identified.

Simultaneous inserts occasionally produced duplicate identifiers; these were resolved using deterministic

suffixing, allowing downstream transforms to proceed without divergence [1][2].

 A rare one‑frame lag was observed between geometry updates and presence highlights. Reordering

broadcasts after the apply phase eliminated this artifact [19][1].

In p5.js, hot‑reloads triggered by text edits sometimes caused a one‑frame flicker during asset resets. This

was mitigated by debouncing file reloads and phasing asset updates after code acknowledgment [4].

J. Key Outcomes

The evaluation demonstrates strong performance, robustness, and usability across code and graphics

workloads.

● Low perceived latency: E2E latency remained below 150 ms under typical WAN conditions, while

local echo (≤ 12 ms) maintained real‑time responsiveness [1][9][4][6].

● Server efficiency: Transform and apply costs stayed below one millisecond for most operations, and

batching enabled throughput in the thousands of operations per second [1][17].

● High intention preservation: Hierarchical addressing and semantic operation design maintained

coherent outcomes even during concurrent edits to the same code block or vector path [6][7][16].

● Robust offline workflows: A CRDT‑based lane for annotations ensured deterministic merges and

reduced pressure on the OT subsystem during comment‑heavy sessions [13][14].

● Positive user experience: Awareness cues and per‑user undo/redo improved recoverability and

collaborative confidence [19][18].

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 11

V. DISCUSSION

A. Immediate‑ vs. retained‑mode collaboration surfaces

p5.js and Paper.js require different synchronization strategies because they expose different collaboration

surfaces [4][6]. In p5.js, collaboration centers on code edits and state parameters that drive the

immediate‑mode draw loop, making text‑range and key‑path operations a natural fit for lightweight OT

transforms [4][16]. Paper.js, by contrast, provides a retained‑mode scene graph in which granular,

addressable operations on paths and segments (e.g., path.segment.update) support parallel editing of

Bézier geometry without overwriting one another [6][7]. This distinction motivates our dual approach:

hierarchical JSON structures for vector data and simpler text/parameter operations for p5.js, consistent

with principles in OT/CRDT work and practices in modern multiplayer editors [16][13][9].

B. Semantic, fine‑grained operations preserve intent

Fine‑grained, semantic operations—such as adjusting an anchor or handle by Δ—preserve user intent more

effectively than coarse updates like replacing an entire path. Although these operations introduce modest

transform complexity, they significantly reduce conflicts and improve the clarity of multi‑user undo/redo

[16][18]. This aligns with OT guidelines emphasizing intention preservation and transformation at the

level of meaningful user actions [16][17].

C. Awareness and recoverability shape collaboration quality

Presence cues—including shared cursors, selections, and editing highlights—proved essential for fluid

parallel editing, reducing accidental conflicts and clarifying others’ focus [19]. Selective undo/redo further

strengthened user confidence, enabling local reversions while maintaining global convergence [16][18].

These findings mirror longstanding CSCW results that awareness and recoverability are primary drivers

of perceived collaborative quality [19].

D. A pragmatic hybrid: OT for core edits, CRDT for metadata

Routing comments and lightweight annotations through a CRDT layer (e.g., Yjs) while reserving OT for

core code and graphics provided two advantages: reliable offline merges and reduced contention on the

OT stream during discussion‑heavy activity [14][13]. This hybrid architecture leverages the strengths of

each approach—OT for ordered, intention‑sensitive state changes and CRDTs for loosely coupled

metadata with local‑first needs [13][14].

E. Performance, batching, and stable addressing

Batching operations on frame boundaries and assigning stable IDs for address paths kept server‑side

transform and apply operations within real‑time thresholds and supported higher collaborative fan‑in

[17][1]. Index‑based addressing alone proved fragile under concurrent inserts/deletes, whereas stable IDs

and hierarchical paths minimized rebasing and improved transform predictability, echoing guidance from

OT systems and production editors [2][6][9]. For heavier scenes, decoupling rendering from state

synchronization (e.g., VDOM‑to‑Canvas approaches) further reduced latency [12].

F. Practical guidance for implementers

From these results, several generalizable practices emerge:

• Use a unified JSON schema with hierarchical addressing down to segment/handle level [6][2].

• Prefer semantic, fine‑grained operations and accumulate micro‑moves into frame‑aligned batches [17].

• Treat awareness data as ephemeral to avoid coupling presence with persistent state [19].

• Consider a dual OT+CRDT architecture for annotative metadata [13][14].

• Instrument transform cost and conflict hotspots early and respond with batching, stable IDs, and

render‑decoupling techniques [1][17][12].

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 12

VI. CONCLUSION

We presented a reference architecture and operation design for real‑time parallel editing across p5.js

(immediate‑mode) and Paper.js (retained‑mode), implemented on ShareDB (OT) with an optional CRDT

lane for annotations [1][4][6][14][13]. A shared, hierarchical JSON schema and semantic, fine‑grained

operations allow collaborators to sculpt vector scenes and adjust creative‑coding parameters concurrently

while preserving intent, maintaining responsiveness, and supporting multi‑user undo/redo [6][4][16][18].

Results demonstrate that:

• The architecture achieves low perceived latency with immediate local echo even under typical WAN

conditions [1][4][6].

• Intention preservation remains high when operations target well‑defined addresses (items, segments,

handles) [6][16].

• A dual‑lane approach improves offline resilience and keeps core document operations friction‑free

[13][14].

• Awareness and recoverability are primary UX levers that amplify the technical guarantees provided by

OT/CRDT [19][18].

Future directions include formalizing transforms for boolean path operations, extending undo to

macro‑transactions, evaluating server sharding, exploring worker‑based rendering for dense scenes, and

running broader user studies across device classes and network profiles [6][12][1].

VII. LIMITATIONS

• Generality of workloads: We focused on common creative tasks (text/parameter edits in p5.js;

segment/path operations in Paper.js). Other actions—boolean path ops, filters, raster compositing, or

hybrid SVG/WebGL—may exhibit different transform dynamics and rendering costs and should be

validated separately [6].

• Client diversity: Most trials used modern desktop browsers; low‑end hardware, high‑DPI displays,

tablets, and mobile devices can shift frame‑time budgets and local echo behavior. Future work should

include broader device profiles and input modalities (pen, touch, stylus) [4][6].

• Network extremes: While we covered typical LAN/WAN profiles, cellular networks with high jitter,

captive portals, or enterprise proxies can introduce non‑stationary latency/loss patterns that stress

transform windows and presence animation [9][1].

• Security and access control: Our server implements ACLs and schema validation, but adversarial

clients (malformed ops, replay attacks) and privacy guarantees (E2E encryption, differential logging) were

out of scope and require deeper analysis [1][2].

• Multi‑user undo semantics: Selective undo works reliably for the defined operation sets; complex

macro‑ops (grouped edits across layers/items) demand extended inverse rules and careful treatment of

causality that we have not yet formalized [16][18].

• CRDT scope: CRDTs were applied to annotations/comments rather than core vector state; teams

requiring fully local‑first editing of all scene data may prefer a CRDT‑first design and should weigh

trade‑offs against OT pipelines [13][14].

• Observability: While the system logs operation timings and transform outcomes, long‑term

observability (distributed tracing, per‑user baselines, anomaly detection) is minimal; richer telemetry

would help detect rare convergence anomalies and UX regressions in the wild [1].

ACKNOWLEDGMENT

We gratefully acknowledge the Processing Foundation and the p5.js community for the ethos of accessible

creative coding; Paper.js maintainers for an elegant retained‑mode API; the ShareDB and DerbyJS

contributors for robust, well‑documented OT infrastructure; and the Yjs community for practical CRDT

tooling [4][6][1][14]. We appreciate the time and feedback of our pilot participants, and the discussions

with colleagues who reviewed early drafts. Any remaining errors are our own.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 13

REFERENCES :

1. ShareDB Documentation, “Realtime JSON document collaboration (OT),”

share.github.io/sharedb. Accessed: Dec. 15, 2025. [Online]. Available:

https://share.github.io/sharedb/

2. ShareDB API, “Doc | ShareDB API,” share.github.io/sharedb/api/doc. Accessed: Dec. 15, 2025.

[Online]. Available: https://share.github.io/sharedb/api/doc

3. ShareDB, “share/sharedb,” GitHub repository. Accessed: Dec. 15, 2025. [Online]. Available:

https://github.com/share/sharedb

4. p5.js, “Reference,” p5js.org/reference. Accessed: Dec. 15, 2025. [Online]. Available:

https://p5js.org/reference/

5. Paper.js, “Features,” paperjs.org/features. Accessed: Dec. 15, 2025. [Online]. Available:

http://paperjs.org/features/

6. Paper.js, “API Reference,” paper.js (Typogram edition). Accessed: Dec. 15, 2025. [Online].

Available: https://paperjs.typogram.co/

7. Paper.js, “Path (Item/PathItem class),” paperjs docs (nof.bof.nu). Accessed: Dec. 15, 2025.

[Online]. Available: http://www.nof.bof.nu/paperjs/docs/classes/Path.html

8. CodeMirror, “Collaborative Example,” codemirror.net/examples/collab. Accessed: Dec. 15,

2025. [Online]. Available: https://codemirror.net/examples/collab/

9. E. Wallace, “How Figma’s multiplayer technology works,” Figma Blog, Oct. 16, 2019.

Accessed: Dec. 15, 2025. [Online]. Available: https://www.figma.com/blog/how-figmas-

multiplayer-technology-works/

10. Excalidraw Team, “Building Excalidraw’s P2P collaboration feature,” Excalidraw Blog, Mar.

29, 2020. Accessed: Dec. 15, 2025. [Online]. Available:

https://plus.excalidraw.com/blog/building-excalidraw-p2p-collaboration-feature

11. A. Carlier, M. Danelljan, A. Alahi, and R. Timofte, “DeepSVG: A hierarchical generative

network for vector graphics animation,” in Proc. NeurIPS, 2020. [Online]. Available:

https://proceedings.neurips.cc/paper/2020/file/bcf9d6bd14a2095866ce8c950b702341-Paper.pdf

12. M. Schwab, D. Saffo, N. Bond, S. Sinha, C. Dunne, J. Huang, and M. A. Borkin, “Scalable

Scalable Vector Graphics: Automatic translation of interactive SVGs to a multithread VDOM for

fast rendering,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 12, pp. 4513–4528, 2022.

[Online]. Available: https://jeffhuang.com/papers/SSVG_TVCG22.pdf

13. M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict‑free replicated data types,” in

Proc. Int. Symp. Stabilization, Safety, and Security of Distributed Systems (SSS), 2011, pp. 386–

400. [Online]. Available: https://inria.hal.science/hal-00932836/file/CRDTs_SSS-2011.pdf

14. Yjs, “Introduction and docs,” docs.yjs.dev. Accessed: Dec. 15, 2025. [Online]. Available:

https://docs.yjs.dev/

15. K. Jahns, “yjs/yjs,” GitHub repository. Accessed: Dec. 15, 2025. [Online]. Available:

https://github.com/yjs/yjs

16. C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving convergence, causality

preservation, and intention preservation in real‑time cooperative editing systems,” ACM Trans.

Comput.-Human Interact., vol. 5, no. 1, pp. 63–108, 1998. [Online]. Available:

https://www.cs.cityu.edu.hk/~jia/research/reduce98.pdf

17. W. Yu, “Constant‑Time Operation Transformation and Integration for Collaborative Editing,” in

Proc. CollaborateCom, 2011. [Online]. Available:

https://eudl.eu/pdf/10.4108/icst.collaboratecom.2011.247090

18. W. Cai, F. He, X. Lv, and Y. Cheng, “A semi‑transparent selective undo algorithm for multi‑user

collaborative editors,” Frontiers of Computer Science, vol. 15, 2021. [Online]. Available:

https://link.springer.com/article/10.1007/s11704-020-9518-x

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT260110200 Volume 17, Issue 1, January-March 2026 14

19. C. Gutwin and S. Greenberg, “A descriptive framework of workspace awareness for real‑time

groupware,” Comput. Supported Cooperative Work (CSCW), vol. 11, pp. 411–446, 2002.

[Online]. Available:

https://grouplab.cpsc.ucalgary.ca/grouplab/uploads/Publications/Publications/2002-

DescriptiveFramework.JCSCW.pdf

https://www.ijsat.org/

