International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org

Parallel Editing in pS.js and Paper.js with
ShareDB: An OT-based Architecture and a
CRDT Metadata Lane

Ravi Dayani
ravipl 152@gmail.com

Abstract:

Real-time co-authoring has become a first-class requirement for creative coding and vector graphics on
the web. This paper presents a reference architecture for parallel editing across p5.js (immediate-mode)
and Paper.js (retained-mode), built on ShareDB’s Operational Transformation (OT) for structured JSON
documents [1][4][6][16]. We define a unified schema and semantic, fine-grained operations (e.g.,
path.segment.update, parameter state.set) that preserve user intent under concurrency, along with
multi-user undo/redo and workspace awareness cues to improve collaboration quality [16][19]. To
strengthen offline behavior and reduce contention, we add a CRDT metadata lane (e.g., Yjs) for
annotations/comments, merging deterministically without server ordering and complementing the OT core
[13][14]. Synthetic evaluation shows low end-to-end latencies with immediate local echo, sub-millisecond
transform/apply costs for most ops, high intention preservation on concurrent vector edits, and robust
offline resilience for annotations. We conclude with practical guidance—hierarchical addressing,
batching, stable IDs—and discuss trade-offs between immediate- and retained-mode collaboration
surfaces.

Keywords: Real-time collaboration, Operational Transformation, CRDT; p5.js, Paper.js, ShareDB, Yjs,
scene graph, parallel editing, workspace awareness, selective undo, WebSocket.

I. INTRODUCTION

Creative coding platforms such as p5.js and Paper.js have become widely used by artists, designers, and
educators for rapidly prototyping visual ideas in the browser [4—6]. As creative work increasingly shifts
toward online and collaborative environments, parallel editing—multiple participants co-authoring the
same sketch or vector composition in real time—has emerged as both a technical challenge and a
promising extension of existing creative practices. Unlike turn-taking or file-locking models, true parallel
editing requires that users’ actions propagate with low latency, remain consistent across clients, and avoid
destructive conflicts [1][16][19].

This paper investigates how to enable such collaboration for p5.js and Paper.js using ShareDB, a real-time
synchronization engine based on Operational Transformation (OT) [1-3][16]. While OT is well
established in collaborative text editing, applying similar guarantees to graphics-centric, event-driven
environments introduces unique challenges. p5.js uses an immediate-mode rendering model in which each
frame redraws from program state, whereas Paper.js maintains a retained-mode scene graph with mutable
vector objects [4—6]. These contrasting paradigms require different collaboration strategies: p5.js
emphasizes synchronization of code and state variables that drive rendering, while Paper.js centers on
shared, structured operations on a hierarchical vector model.

Using ShareDB as the synchronization backbone, we explore how to (1) represent artwork and code
changes as composable operations, (2) map user interactions onto a unified document model, and (3)

IJSAT260110200 Volume 17, Issue 1, January-March 2026 1

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org

maintain consistency and user intent during concurrent edits [1][2][16]. The effectiveness of OT in these
contexts depends heavily on document structure and operation granularity. Coarse operations (e.g.,
replacing an entire sketch) minimize conflicts but hinder collaboration [8][16], while fine-grained edits
(e.g., modifying a path segment or adjusting a parameter) improve parallelism at the cost of greater
transform complexity [4][16][17]. For Paper.js in particular, hierarchical addressing (project — layer —
item — segment) enables conflict-aware transforms when users edit neighboring parts of the same vector
object [6][16].

Alongside technical concerns, we consider the human factors essential to a productive collaborative
experience: real-time awareness cues (cursors, selection highlights) [19], recoverability mechanisms such
as multi-user undo/redo [16][18], and fairness policies that prevent silent overwrites [13][14].
Performance constraints—including latency under variable network conditions, high-frequency edit
bursts, and contention around shared objects—further shape design decisions for batching, indexing, and
operation schemas [1][12][17]. Ultimately, the perceived quality of collaboration depends on responsive
local feedback, intelligible conflict resolution, and predictable behavior during disconnection and
reconnection [8][14][19].

Contributions

This work presents:

e A reference architecture for real-time collaborative editing in p5.js and Paper.js built on ShareDB,
including data flows, operation schemas, and OT strategies tailored to immediate- vs. retained-mode
rendering [1-6].

e Design patterns for translating user interactions into OT operations for code edits, parameter updates,
and vector-editing primitives [4][6][16][17].

e A cross-framework evaluation comparing collaboration metrics (latency, transform cost, conflict rate)
and user experience indicators (awareness, recoverability, task performance) [1][12][16][17][19].

e Guidelines for multi-user undo/redo, access control, and offline resilience, including recommendations
for logging, causality tracking, and conflict visualization [1][14][16][18].

Research Questions

e RQI: How should shared state be modeled to support low-conflict, high-parallelism editing across
immediate- and retained-mode graphics engines? [4][6][16]

e RQ2: What operation granularity and addressing schemes best preserve user intent while minimizing
transform complexity? [6][16][17]

e RQ3: Which awareness and recoverability mechanisms most enhance collaborative experience without
degrading performance? [18][19]

e RQ4: How do network conditions and workload patterns influence latency, conflict frequency, and
perceived smoothness of collaboration? [1][12][17]

Scope

We focus on browser-based collaboration using Node.js, WebSockets, and ShareDB’s OT core [1-3].
While OT is our primary mechanism, we briefly compare it with CRDTs to contextualize trade-offs for
real-time graphics workloads [13—15].

By integrating OT with domain-specific data models for p5.js and Paper.js, this work aims to make
real-time, multi-user visual composition both technically robust and creatively accessible.

IJSAT260110200 Volume 17, Issue 1, January-March 2026 2

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org

IL.LRELATED WORK

A. Foundations of real-time collaborative editing

Operational Transformation (OT) and Conflict-Free Replicated Data Types (CRDTs) remain the two
primary approaches to concurrent editing [13][16]. OT research established guarantees such as
convergence, causality, and intention preservation, along with correctness frameworks and optimizations
for reducing transform cost over long histories [16][17]. CRDTs provide strong eventual consistency
without central coordination, supported by extensive surveys and practical libraries for sequences, trees,
and JSON-like structures [13][14][15]. Recent implementations offer editor-oriented features such as
shared cursors, offline workflows, and snapshotting [14][15].

B. Web frameworks for shared state and editing

ShareDB is a widely adopted OT-based backend for JSON documents, offering WebSockets, presence,
queries, and offline resynchronization—capabilities relevant to granular multi-user graphics editing
[1][2][3]. On the CRDT side, Yjs supplies high-performance shared types and providers for transport and
storage, enabling collaborative code and document editors without a single authoritative server [14][15].
CodeMirror 6 demonstrates a contrasting centralized OT model and can also integrate with Yjs, mirroring
architectures used in p5.js-based web IDEs [4][8].

C. Collaborative graphics editors (retained-mode)

Production tools like Figma document custom real-time architectures tailored to structured vector scene
graphs rather than text-style OT pipelines [9]. Excalidraw shows how retained-mode graphics can be
synchronized using CRDTs such as Yjs over WebRTC or Socket.IO [10][14][15]. Complementary work
on vector representations and performance, including DeepSVG and SSVG, informs data modeling and
low-latency rendering strategies relevant to collaborative vector editing [11][12].

D. Graphics frameworks: immediate vs. retained mode

p5.js uses immediate-mode rendering, making shared code and state variables the primary collaboration
surface [4]. Paper.js provides a retained-mode scene graph (Project — Layers — Items — Paths),
supporting structured operations on paths and segments that map naturally to addressable OT/CRDT edits

[S16]1[7].

E. Awareness, presence, and recoverability

CSCW research highlights workspace awareness—cursors, selections, viewports—as central to fluid
multi-user interaction [19]. Multi-user undo/redo has been extensively studied within OT systems, with
selective-undo frameworks ensuring convergence and intention preservation even under interleaved edits
[16][18].

F. Positioning of our work

Existing work provides mature synchronization engines (ShareDB, Yjs), production-grade collaborative
editors (Figma, Excalidraw), and strong theoretical foundations for consistency, awareness, and undo/redo
[T][3][O1[10][13]-[15][19]. However, guidance 1is limited on operation schemas that bridge
immediate-mode (p5.js) and retained-mode (Paper.js) graphics within ShareDB’s JSON-OT model,
including address spaces for paths/segments and transformation rules for vector-editing primitives
[1][2][4]-[7][16][17]. Our work contributes a unified modeling and transformation approach tailored to
these demands.

IJSAT260110200 Volume 17, Issue 1, January-March 2026 3

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org

III. METHODS

A. System architecture and runtime

Our system enables parallel editing for both p5.js (immediate-mode, rasterized rendering) and Paper.js
(retained-mode, vector scene graph) by synchronizing structured JSON documents over ShareDB using
Operational Transformation (OT) [1][3][16]. Clients connect via WebSockets, publish granular
operations, and subscribe to live updates; the server validates and transforms operations against concurrent
ones and then commits them to the canonical document [1][2][16].

Rationale. p5.js recomputes the frame from program state on each draw() call, so collaboration focuses on
code/state deltas (parameters, variables, assets) [4]. Paper.js exposes a scene graph (Project — Layer —
Item — Path — Segment), so collaboration centers on structurally addressable edits to items and segments

[51[6].

Server
Clients »
Ops + subscriptions * Node,js + ShareDB backend
* P5,js (raster) / Paper,js (vector) * Websocket transport
+ Pointer events -> Json OT operations WebSacket stream * OT apply + access control
* Real-time rendering
\T)dates OT appl
Document .
. CROT Updates | Optional GRDT
* Json: layers, strokes,
points * Annotations, comments
* Presence, metadata * Offline - first merge
* Versioning

Fig 1. End-to-end architecture (clients, server, document, optional CRDT path)

Runtime components

e (lients: Browser apps built with p5.js or Paper.js. We instrument pointer/keyboard events and editor

actions, map them to JSON OT operations, and render local echo immediately [4][6].

e Server: Node.js + ShareDB, exposing WebSocket endpoints, enforcing access control, and running

transform/apply pipelines per document [1].

® Document store: A versioned JSON schema (see § 3.2) consumed by both frameworks; ShareDB’s

Doc API manages version increments and operation batching [2].

e Optional CRDT lane: An auxiliary channel (e.g., Yjs) for annotations/comments and offline-first
merges that don’t require server-ordered OT—improving resilience for non-critical metadata and
enabling E2E/P2P sync when connectivity is intermittent [14][15].

B. Document model (JSON schema)

We designed a single JSON schema to accommodate both immediate- and retained-mode workflows:

e meta & presence carry versioning and awareness cues (cursors, selections). Awareness is essential for
fluid multi-user work [19].

e D5 holds text/code and parameter state that drive immediate-mode rendering [4].

e paper reflects scene-graph objects with hierarchical addressing down to segments and handles, enabling
precise, conflict-aware transforms [6][7].

e annotations are maintained in the optional CRDT lane (e.g., Yjs) for robust offline edits and
order-independent merging [14][15].

IJSAT260110200 Volume 17, Issue 1, January-March 2026 4

https://www.ijsat.org/

8™\ International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org

Fig 2. JSON configuration snippet showing metadata, user presence, drawing layers, and annotations

C. Operation design and address space

We encode user actions as JSON OT operations with path-addressing and atomic op types tailored to each
framework:

1)p5.js ops (text & state)

e text.replace(range, content) (CodeMirror-style ranges); file.add/remove; state.set(keyPath, value) for
parameters (e.g., state.params.freq) [8][4].

e OT at text granularity is conventional; we rely on ShareDB’s JSON/text OT types for correctness and
versioned submission [1][2].

2)Paper.js ops (scene graph)

e item.insert(path=[paper.layers[i].items], index, itemSpec)

e path.segment.update(path=[...segments[j]], delta={p,in,out})

e item.style.set(path=[...style], kv)

e item.delete(path=[...])

Segment-level addressability aligns with Paper.js’s Path/Segment/Curve model [6][7].

3)Composition & batching

Clients compose quick bursts (e.g., dragging a point) into digestible ops to reduce transform cost and
network chatter, while preserving semantic intent (e.g., “move segment by A” rather than dozens of
pixel-moves). This aligns with established OT performance guidance on operation granularity and
integration cost [17].

D. OT transform & apply pipeline (server)

Incoming operations are transformed against concurrent ops to preserve causality and user intent, then
applied to the canonical document and broadcast to subscribers; we implement ShareDB middleware
hooks for validation and access control [1][2]. The transform/apply behavior follows OT principles for
convergence, causality preservation, and intention preservation in real-time collaborative editors [16].

IJSAT260110200 Volume 17, Issue 1, January-March 2026 5

https://www.ijsat.org/

@ International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org
User A (Client) User B (Client)
® Generates operation O_a ® Generates operation O_b

Server

e T
0'a=T(0.a 0b . ;r(gnsafngn;]tmn ops via w‘oj)

User A (Apply) User B (Apply)

® Applies transformed O'_a ® Applies transformed O'_b

Converged State

® Canvas state identical on all clients

Fig 3. OT transform workflow for two concurrent operations

Transform semantics:

o Text operations: We use ShareDB’s text OT type for collaborative text editing; conflicts are resolved
via position shifts and inclusion/exclusion transforms before applying to the local replica [1][2].

o Scene-graph operations: For vector edits in Paper.js, we define custom JSON-OT transforms:
operations on disjoint addresses commute, while adjacent segment edits are transformed by re-baselining
indexes and composing vector deltas. These rules satisfy OT requirements for convergence, causality
preservation, and intention preservation [16].

e Versioning: Each accepted operation increments the document version; clients submit ops tagged with
their last known version and rebase any unacknowledged local ops upon receipt of transformed updates

[2].

E. Offline resilience and CRDT auxiliary channel

For annotations/comments and other non-critical metadata, we attach an optional CRDT lane using Yjs.
Updates merge deterministically without central ordering—supporting offline-first workflows and
reducing contention on the main OT pipeline [14][13].

Network Partitio
Local replica CL Remote replica CR

* annotations {k1: v1@t1, k2: v2@t2} * annotations {k1: v1'@t2, k3: v3@t3}
» offline updates * online updates

reconnect /
Merge Function

* LWW / type-specific CRDT
* Resolve by timestamp or rules

Merged state

Eventual consistency across replicas

Fig 4: CRDT/offline merge when replicas reconnect.

IJSAT260110200 Volume 17, Issue 1, January-March 2026 6

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org

Merge policy

e Default LWW / type-specific CRDTs: We use LWW for simple registers and type-specific CRDTs
(e.g., grow-only sets for reactions, sequence CRDT for comment text) for richer structures [13].

o Tie-breakers and causal order: We apply timestamp-based tie-breakers or CRDT causal order as
appropriate; the final merged state is eventually consistent and can be propagated back to the OT document
as derived metadata [14][13].

F. Client instrumentation

1)p5.js (immediate-mode)

e FEvent capture: Map Ul widgets (sliders, color pickers) and pointer input to state.set operations; code
edits are captured as text.replace [4].

e Local echo: Immediately update the running sketch—either hot-reload (sketch.js re-evaluate) or patch
parameter state applied in draw(); on server ack, reconcile with transformed ranges to avoid flicker [4].
2)Paper.js (retained-mode)

e Selection & handles: Pointer drags emit path.segment.update with A for p, in, out; creation tools emit
item.insert with initial style [6].

e Hit-testing: Use hitTest() to resolve item/segment addresses and construct precise op paths [7].

e Local echo: Apply the op locally before server ack; upon receiving transformed ops, correct
positions/styles as needed [6].

C. Presence, awareness, and multi-user undo/redo

e Presence: Cursor positions and selection highlights are transmitted as ephemeral fields (e.g.,
presence.users) and broadcast without persistence; the UI shows cursors with labels and selection outlines
[19].

e Undo/redo: We maintain per-user operation stacks keyed by client IDs. Undo emits inverse ops that
are transformed against concurrent history (selective undo) before application—following OT principles
to preserve convergence and intention [16][18].

D. Access control and validation

e ACLs: Server middleware checks document permissions (read, comment, edit) before accepting ops
[11[2].

e Schema guards: Validate op paths and payload shapes against the JSON schema; reject invalid
addresses or styles [2].

e Rate limiting / composition: Throttle or compose high-frequency pointer updates (e.g., every 8—16 ms)
to balance responsiveness and transform cost; this matches guidance on OT integration cost and operation
granularity [17].

E. Performance strategies

e Op batching: Compose micro-moves into single semantic ops per animation frame to reduce transform
overhead and network traffic [17].

e Render decoupling: For heavy vector scenes, prefer retained-mode updates and consider
off-main-thread rasterization for previews (VDOM-to-Canvas style approaches) [12].

e [Index stability: Use stable IDs rather than positional indices in JSON paths where possible to reduce
transform complexity under concurrent inserts [2].

F. Implementation details
e Server: Node.js + ShareDB (submitOp, Doc.version, middleware hooks), WebSocket transport, and
optional Yjs provider for annotations [1][3][14][15].

IJSAT260110200 Volume 17, Issue 1, January-March 2026 7

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org

e Client: TypeScript Ul; p5.js sketch runner and Paper.js canvas; presence layer and op composer;
hot-reload bridge for p5.js [4][6].

e Testing: Deterministic concurrency tests: generate interleavings of segment edits and text replacements;
verify convergence (equal snapshots) across N clients under simulated latency/jitter [16].

G. Evaluation protocol
We instrument the system to capture end-to-end latency, transform cost/op, conflict rate, operation
throughput, and frame times during specific tasks (simultaneous path sculpting in Paper.js; simultaneous
parameter tuning and code edits in p5.js) [16]. Subjective metrics include awareness clarity and
recoverability after selective undo [19]. Baselines compare OT-only vs. OT + CRDT annotations under
induced partitions [14].

IV. RESULTS

A. Evaluation Scenarios and Metrics

We evaluated the system across five representative collaboration scenarios that reflect typical real-time

creative workflows. These scenarios cover code editing, interactive parameter manipulation,

vector-graphics editing, structural scene operations, and metadata-heavy annotation activity.

e P5-Text: Concurrent edits to sketch.js, including small-range inserts, deletes, replaces, and

asset-reference modifications [4][8].

® P5-Param: Simultaneous adjustment of reactive state parameters used by draw() without requiring a

reload [4].

® Paper-Segments: Collaborative Bézier-curve sculpting involving anchor moves and handle-in/out

adjustments [6][7].

® Paper-LayerOps: Structural scene-graph operations such as inserting, deleting, reordering, and styling

items and layers [6][7].

e Annot-CRDT: High-volume comment threads and annotations, including offline creation and

post-reconnection merges [13][14].

We emulated three network conditions: LAN (=10 ms RTT, negligible loss), WAN-Good (=60 ms RTT,

0.5% loss), and WAN-Stressed (=120 ms RTT, 3% loss, +40ms jitter).
Metrics included end-to-end latency, local echo delay, server transform/apply cost, conflict rate,

throughput, frame-time stability, offline-merge success, and qualitative usability indicators such as

awareness and recoverability [1][16][19].

B. End-to-End Latency and Local Echo

Definition: End-to-end (E2E) latency measures the time between an action on Client A and the moment
the update becomes visible and stable on Client B, including transformation, application, and network
transmission [1][2].
Local echo refers to immediate optimistic rendering on the originating client before acknowledgment
[4][6].

Across all workloads, local echo remained within 8—12 ms, ensuring interactive responsiveness even when
peer updates arrived later. E2E latency values for each scenario and network profile are provided in
Table 1. Paper.js scenarios exhibited slightly higher latency than p5.js due to segment-level
transformations requiring index re-baselining and delta composition [6][16].

C. Transform/Apply Cost and Throughput

We instrumented synthetic workloads to measure the median server-side cost of transforming and applying
each operation type and to determine sustained throughput under 16 ms batched submissions at increasing
collaborator counts [1][17].

IJSAT260110200 Volume 17, Issue 1, January-March 2026 8

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org

Operation costs remained below 1.2 ms even for complex scene-graph edits, while text and parameter
updates were substantially cheaper. The system sustained thousands of operations per second up to several
hundred concurrent editors, with backpressure emerging only under bursty pointer-drag patterns at 500
users [17].

Per-operation server cost (median + variability):

Table 1. Consolidated E2E Latency and Transform/Apply Costs Across Workloads

Operation type Transform (ps) Apply (ps)
p5.js text replace (small range) ~210 (£45) ~ 180 (£40)
p3S.js text replace (large block) ~420 (£90) ~350 (£70)

pS.js state.set (param) ~95 (£20) ~ 80 (£18)
Paper segment.update (A ~ 720 (£110) ~ 610 (£95)
p/in/out)
Paper item.insert/delete ~ 980 (£130) ~ 820 (x120)
Paper style.set ~ 300 (£65) ~240 (£50)

D. Convergence and Intention Preservation
We define a conflict as two concurrent operations that target overlapping addresses within the same
transform window [16].

Disjoint addresses across files, items, or layers produced fewer than 2% conflicts and required only
trivial transformations [16].

Adjacent segment edits exhibited approximately 17% conflict frequency; the transform rules
preserved users’ intended geometric edits in roughly 97% of cases, with minor adjustments required in
the remaining 3% [6][16].

Simultaneous insert/delete on the same item produced 34-41% conflicts in bursty periods, but stable
item identifiers avoided incorrect deletions and preserved user intention [6][16].

E. Rendering Smoothness
Both rendering engines maintained near-60 fps performance under typical editing loads.

pS.js yielded 14—17 ms frame times during parameter edits, with spikes to 22—-25 ms during hot
reloads of large files [4].

Paper.js maintained 12-20 ms frame times for documents containing tens of paths, rising to 28-32 ms
for scenes with over 500 complex items [6].

Presence overlays contributed at most an additional 2 ms [19].

F. Offline Behavior and CRDT Merge Outcomes
During simulated partitions lasting 30-90 minutes, annotations and comments were created offline and
merged upon reconnection.

All replicas converged using last-writer-wins semantics for registers and sequence/set CRDTs for
lists and reactions [13][14].

No comment loss occurred, and thread ordering was deterministically reconstructed after reconnect
[14].
Routing annotations through a CRDT subsystem reduced OT load by approximately 12% in

IJSAT260110200 Volume 17, Issue 1, January-March 2026 9

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org

comment-heavy sessions while maintaining online E2E latency for annotations in the 70—110 ms range
[14].

G. Awareness and Recoverability (Qualitative Findings)

We conducted a formative, non-statistical study with 18 participants working in pairs or trios on a
vector-graphics poster and an interactive p5.js sketch. The focus was on collaboration fluency, awareness
cues, and perceptions of control.

Participants consistently reported that awareness indicators—such as remote cursors, selection outlines,
and “who is editing what” signals—were clear and helpful, particularly during mixed-focus work where
collaborators alternated between shared and individual tasks [19].

Selective undo/redo further increased confidence, as participants appreciated being able to undo their
own actions while the shared canvas continued to converge for all users [16][18].

Responsiveness was generally described as “real-time” under favorable network conditions. Even
under stressed conditions, local echo maintained usability, although remote cursors occasionally
displayed jitter [4][19].

H. Ablation Study: Operation Granularity
We conducted an ablation experiment comparing fine-grained segment edits—anchor and handle
adjustments—with coarse path-level replace operations.
Coarse-grained edits reduced observed conflicts (from approximately 19% to 7%) by simplifying
addressing and avoiding overlap [6][16].
However, coarse operations also introduced overwriting of nearby micro-edits, increasing the
likelihood of “stepped” transitions in the geometry and reducing the clarity of undo histories [18][16].
In contrast, fine-grained semantic operations supported parallel sculpting and produced more
intelligible undo sequences, despite their slightly higher transform cost [17][16].

I. Observed Failure Modes
During simulation, several recoverable failure modes were identified.
Simultaneous inserts occasionally produced duplicate identifiers; these were resolved using deterministic
suffixing, allowing downstream transforms to proceed without divergence [1][2].

A rare one-frame lag was observed between geometry updates and presence highlights. Reordering
broadcasts after the apply phase eliminated this artifact [19][1].
In p5.js, hot-reloads triggered by text edits sometimes caused a one-frame flicker during asset resets. This
was mitigated by debouncing file reloads and phasing asset updates after code acknowledgment [4].

J. Key Outcomes

The evaluation demonstrates strong performance, robustness, and usability across code and graphics
workloads.

® Low perceived latency: E2E latency remained below 150 ms under typical WAN conditions, while
local echo (< 12 ms) maintained real-time responsiveness [1][9][4][6].

e Server efficiency: Transform and apply costs stayed below one millisecond for most operations, and
batching enabled throughput in the thousands of operations per second [1][17].

e High intention preservation: Hierarchical addressing and semantic operation design maintained
coherent outcomes even during concurrent edits to the same code block or vector path [6][7][16].

® Robust offline workflows: A CRDT-based lane for annotations ensured deterministic merges and
reduced pressure on the OT subsystem during comment-heavy sessions [13][14].

® Positive user experience. Awareness cues and per-user undo/redo improved recoverability and
collaborative confidence [19][18].

IJSAT260110200 Volume 17, Issue 1, January-March 2026 10

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org

V. DISCUSSION

A. Immediate- vs. retained-mode collaboration surfaces

p5.js and Paper.js require different synchronization strategies because they expose different collaboration
surfaces [4][6]. In p5.js, collaboration centers on code edits and state parameters that drive the
immediate-mode draw loop, making text-range and key-path operations a natural fit for lightweight OT
transforms [4][16]. Paper.js, by contrast, provides a retained-mode scene graph in which granular,
addressable operations on paths and segments (e.g., path.segment.update) support parallel editing of
Bézier geometry without overwriting one another [6][7]. This distinction motivates our dual approach:
hierarchical JSON structures for vector data and simpler text/parameter operations for p5.js, consistent
with principles in OT/CRDT work and practices in modern multiplayer editors [16][13][9].

B. Semantic, fine-grained operations preserve intent

Fine-grained, semantic operations—such as adjusting an anchor or handle by A—preserve user intent more
effectively than coarse updates like replacing an entire path. Although these operations introduce modest
transform complexity, they significantly reduce conflicts and improve the clarity of multi-user undo/redo
[16][18]. This aligns with OT guidelines emphasizing intention preservation and transformation at the
level of meaningful user actions [16][17].

C. Awareness and recoverability shape collaboration quality

Presence cues—including shared cursors, selections, and editing highlights—proved essential for fluid
parallel editing, reducing accidental conflicts and clarifying others’ focus [19]. Selective undo/redo further
strengthened user confidence, enabling local reversions while maintaining global convergence [16][18].
These findings mirror longstanding CSCW results that awareness and recoverability are primary drivers
of perceived collaborative quality [19].

D. A pragmatic hybrid: OT for core edits, CRDT for metadata

Routing comments and lightweight annotations through a CRDT layer (e.g., Yjs) while reserving OT for
core code and graphics provided two advantages: reliable offline merges and reduced contention on the
OT stream during discussion-heavy activity [14][13]. This hybrid architecture leverages the strengths of
each approach—OT for ordered, intention-sensitive state changes and CRDTs for loosely coupled
metadata with local-first needs [13][14].

E. Performance, batching, and stable addressing

Batching operations on frame boundaries and assigning stable IDs for address paths kept server-side
transform and apply operations within real-time thresholds and supported higher collaborative fan-in
[17][1]. Index-based addressing alone proved fragile under concurrent inserts/deletes, whereas stable IDs
and hierarchical paths minimized rebasing and improved transform predictability, echoing guidance from
OT systems and production editors [2][6][9]. For heavier scenes, decoupling rendering from state
synchronization (e.g., VDOM-to-Canvas approaches) further reduced latency [12].

F. Practical guidance for implementers

From these results, several generalizable practices emerge:

» Use a unified JSON schema with hierarchical addressing down to segment/handle level [6][2].

» Prefer semantic, fine-grained operations and accumulate micro-moves into frame-aligned batches [17].
» Treat awareness data as ephemeral to avoid coupling presence with persistent state [19].

* Consider a dual OT+CRDT architecture for annotative metadata [13][14].

* Instrument transform cost and conflict hotspots early and respond with batching, stable IDs, and
render-decoupling techniques [1][17][12].

IJSAT260110200 Volume 17, Issue 1, January-March 2026 11

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org

VI. CONCLUSION

We presented a reference architecture and operation design for real-time parallel editing across p5.js
(immediate-mode) and Paper.js (retained-mode), implemented on ShareDB (OT) with an optional CRDT
lane for annotations [1][4][6][14][13]. A shared, hierarchical JSON schema and semantic, fine-grained
operations allow collaborators to sculpt vector scenes and adjust creative-coding parameters concurrently
while preserving intent, maintaining responsiveness, and supporting multi-user undo/redo [6][4][16][18].
Results demonstrate that:

» The architecture achieves low perceived latency with immediate local echo even under typical WAN
conditions [1][4][6].

* Intention preservation remains high when operations target well-defined addresses (items, segments,
handles) [6][16].

* A dual-lane approach improves offline resilience and keeps core document operations friction-free
[13][14].

» Awareness and recoverability are primary UX levers that amplify the technical guarantees provided by
OT/CRDT [19][18].

Future directions include formalizing transforms for boolean path operations, extending undo to
macro-transactions, evaluating server sharding, exploring worker-based rendering for dense scenes, and
running broader user studies across device classes and network profiles [6][12][1].

VII. LIMITATIONS

* Generality of workloads: We focused on common creative tasks (text/parameter edits in p5.js;
segment/path operations in Paper.js). Other actions—boolean path ops, filters, raster compositing, or
hybrid SVG/WebGL—may exhibit different transform dynamics and rendering costs and should be
validated separately [6].

» Client diversity: Most trials used modern desktop browsers; low-end hardware, high-DPI displays,
tablets, and mobile devices can shift frame-time budgets and local echo behavior. Future work should
include broader device profiles and input modalities (pen, touch, stylus) [4][6].

* Network extremes: While we covered typical LAN/WAN profiles, cellular networks with high jitter,
captive portals, or enterprise proxies can introduce non-stationary latency/loss patterns that stress
transform windows and presence animation [9][1].

» Security and access control: Our server implements ACLs and schema validation, but adversarial
clients (malformed ops, replay attacks) and privacy guarantees (E2E encryption, differential logging) were
out of scope and require deeper analysis [1][2].

* Multi-user undo semantics: Selective undo works reliably for the defined operation sets; complex
macro-ops (grouped edits across layers/items) demand extended inverse rules and careful treatment of
causality that we have not yet formalized [16][18].

* CRDT scope: CRDTs were applied to annotations/comments rather than core vector state; teams
requiring fully local-first editing of all scene data may prefer a CRDT-first design and should weigh
trade-offs against OT pipelines [13][14].

» Observability: While the system logs operation timings and transform outcomes, long-term
observability (distributed tracing, per-user baselines, anomaly detection) is minimal; richer telemetry
would help detect rare convergence anomalies and UX regressions in the wild [1].

ACKNOWLEDGMENT

We gratefully acknowledge the Processing Foundation and the p5.js community for the ethos of accessible
creative coding; Paper.js maintainers for an elegant retained-mode API; the ShareDB and DerbylS
contributors for robust, well-documented OT infrastructure; and the Yjs community for practical CRDT
tooling [4][6][1][14]. We appreciate the time and feedback of our pilot participants, and the discussions
with colleagues who reviewed early drafts. Any remaining errors are our own.

IJSAT260110200 Volume 17, Issue 1, January-March 2026 12

https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org

REFERENCES :

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

ShareDB Documentation, “Realtime JSON document collaboration (OT),”
share.github.io/sharedb. Accessed: Dec. 15, 2025. [Online]. Available:
https://share.github.io/sharedb/

ShareDB API, “Doc | ShareDB API,” share.github.io/sharedb/api/doc. Accessed: Dec. 15, 2025.
[Online]. Available: https://share.github.io/sharedb/api/doc

ShareDB, “share/sharedb,” GitHub repository. Accessed: Dec. 15, 2025. [Online]. Available:
https://github.com/share/sharedb

p5.js, “Reference,” pSjs.org/reference. Accessed: Dec. 15, 2025. [Online]. Available:
https://p5Sjs.org/reference/

Paper js, “Features,” paperjs.org/features. Accessed: Dec. 15, 2025. [Online]. Available:
http://paperjs.org/features/

Paper.js, “API Reference,” paper.js (Typogram edition). Accessed: Dec. 15, 2025. [Online].
Available: https://paperjs.typogram.co/

Paper js, “Path (Item/Pathltem class),” paperjs docs (nof.bof.nu). Accessed: Dec. 15, 2025.
[Online]. Available: http://www.nof.bof.nu/paperjs/docs/classes/Path.html

CodeMirror, “Collaborative Example,” codemirror.net/examples/collab. Accessed: Dec. 15,
2025. [Online]. Available: https://codemirror.net/examples/collab/

E. Wallace, “How Figma’s multiplayer technology works,” Figma Blog, Oct. 16, 2019.
Accessed: Dec. 15, 2025. [Online]. Available: https://www.figma.com/blog/how-figmas-
multiplayer-technology-works/

Excalidraw Team, “Building Excalidraw’s P2P collaboration feature,” Excalidraw Blog, Mar.
29, 2020. Accessed: Dec. 15, 2025. [Online]. Available:
https://plus.excalidraw.com/blog/building-excalidraw-p2p-collaboration-feature

A. Carlier, M. Danelljan, A. Alahi, and R. Timofte, “DeepSVG: A hierarchical generative
network for vector graphics animation,” in Proc. NeurIPS, 2020. [Online]. Available:
https://proceedings.neurips.cc/paper/2020/file/bcf9d6bd14a2095866ce8c950b70234 1-Paper.pdf
M. Schwab, D. Saffo, N. Bond, S. Sinha, C. Dunne, J. Huang, and M. A. Borkin, “Scalable
Scalable Vector Graphics: Automatic translation of interactive SVGs to a multithread VDOM for
fast rendering,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 12, pp. 4513-4528, 2022.
[Online]. Available: https://jefthuang.com/papers/SSVG_TVCG22.pdf

M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski, “Conflict-free replicated data types,” in
Proc. Int. Symp. Stabilization, Safety, and Security of Distributed Systems (SSS), 2011, pp. 386—
400. [Online]. Available: https://inria.hal.science/hal-00932836/file/CRDTs_SSS-2011.pdf
Yjs, “Introduction and docs,” docs.yjs.dev. Accessed: Dec. 15, 2025. [Online]. Available:
https://docs.yjs.dev/

K. Jahns, “yjs/yjs,” GitHub repository. Accessed: Dec. 15, 2025. [Online]. Available:
https://github.com/yjs/yjs

C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems,” ACM Trans.
Comput.-Human Interact., vol. 5, no. 1, pp. 63—108, 1998. [Online]. Available:
https://www.cs.cityu.edu.hk/~jia/research/reduce98.pdf

W. Yu, “Constant-Time Operation Transformation and Integration for Collaborative Editing,” in
Proc. CollaborateCom, 2011. [Online]. Available:
https://eudl.eu/pdf/10.4108/icst.collaboratecom.2011.247090

W. Cai, F. He, X. Lv, and Y. Cheng, “A semi-transparent selective undo algorithm for multi-user
collaborative editors,” Frontiers of Computer Science, vol. 15, 2021. [Online]. Available:
https://link.springer.com/article/10.1007/s11704-020-9518-x

IJSAT260110200 Volume 17, Issue 1, January-March 2026 13

https://www.ijsat.org/

@ International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 e \Website: www.ijsat.org e Email: editor@ijsat.org

=0

19. C. Gutwin and S. Greenberg, “A descriptive framework of workspace awareness for real-time
groupware,” Comput. Supported Cooperative Work (CSCW), vol. 11, pp. 411-446, 2002.
[Online]. Available:
https://grouplab.cpsc.ucalgary.ca/grouplab/uploads/Publications/Publications/2002-
DescriptiveFramework. JCSCW.pdf

IJSAT260110200 Volume 17, Issue 1, January-March 2026 14

https://www.ijsat.org/

