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Abstract

Herpes (NAGIN) on Eye / Ocular Herpes is a major cause of infectious corneal blindness, often
difficult to diagnose due to overlapping morphological features. We tackle this challenge, by proposing
EyeOcuHerp Hybrid Framework, blending Convolutional Neural Networks (CNNs) for feature extraction
with classical Machine Learning (ML) classifiers to produce trustworthy Herpes on Eye (ocular herpes)
diagnosis.

We worked with 604 (279 herpes lesions and 325 without) corneal images, plus 1,400 (700 each)
synthetic samples generated from CNN-based feature patterns to keep lesion categories balanced.
Checking LV Prasad Eye Institute’s EMR records confirmed that both the real and synthetic features
matched clinically recognized patterns: dendritic, geographic, and disciform keratitis, like branching lines
seen under a slit lamp, proving their authenticity.

Performance analysis revealed that, the EyeOcuHerp Model models reached AUC of 0.71 and
accuracy 66%, matching classical ensembles, while keeping results interpretable through CNN based
morphological features that highlight subtle texture patterns. Lesion specific stress tests showed reliably
high sensitivity, above 0.86 for every morphology, while geographic and disciform types stood out with
AUCs of 0.807 and 0.818. Specificity stayed moderate, 0.43 and 0.49 which shows just how hard it is to
tell a herpes lesion from other corneal lesions, especially when both look equally cloudy under the slit
lamp. Synthetic augmentation boosted the dataset’s variety, and a quick run of stats showed it matched
real-world patterns almost perfectly.

Overall, EyeOcuHerp shows practical, diagnostic process. Future studies will focus on larger
datasets, sharpening specificity, and testing results to better ophthalmic care.
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1. Introduction
1.1 Background
Herpes on Eye (Nagin) is a leading cause of infectious corneal blindness globally, contributing
significantly to ocular morbidity and recurrent vision loss [21, 25, 31]. The clinical spectrum of HSK
includes dendritic ulcers, geographic lesions, and disciform keratitis, often mimicking other corneal
pathologies and complicating diagnosis [27, 30]. Slit-lamp examination remains the primary diagnostic
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modality, yet its reliance on subjective interpretation introduces variability across practitioners and
settings [29].

In recent years, Artificial Intelligence (Al) has emerged as a transformative tool in ophthalmology. CNNs
have demonstrated exceptional performance in extracting morphological features from ocular images,
including lesion shape, texture, and intensity [1, 11, 15]. When combined with classical ML classifiers
such as support vector machines (SVM) and random forests, these hybrid models offer improved
robustness and diagnostic accuracy [12, 20]. Explainable Al further enhances clinical interpretability by
linking CNN-derived features to recognizable morphologies such as dendritic branching and disciform
patterns [5].

Despite these advances, most Al applications in ophthalmology focus on retinal diseases or general corneal
infections, with limited attention to herpes-specific morphologies. Moreover, few models integrate
Electronic Medical Record (EMR) validation, which is essential for clinical translation [8, 24]. This gap
underscores the need for a dedicated, clinically grounded Al framework for ocular herpes diagnosis.

1.2 Problem Statement

In spite of Al's potential in ophthalmic diagnostics, automated identification of ocular herpes is still in its
infancy. Current models sometimes fail to incorporate EMR-based validation, lack training data unigque to
herpes, and struggle with the heterogeneity of herpes presentations. The absence of a robust, hybrid CNN-
ML framework tailored to Eye (Ocular) Herpes causes uncertainty in diagnosis, treatment delays, and
subpar patient outcomes [21, 25, 28].

Figure 1. (a) Eye (Ocular) Herpes signs on face and eye, (b) Dendritic-ulcer-scaled image.

Ocular herpes (eye herpes)

Herpes simplex virus (types 1 and 2)

Blisters

Irritation Eyelid swelling
and redness (blepharitis)

Herpes zoster ophthalmicus

Rash - Blisters

Above Figure 1. (a) Present clear picture of Eye (Ocular) Herpes on face and eye, (b) is Dendritic-ulcer-
scaled image from L V Prasad Eye Institute.

1.3 Research Gap
The literature reveals several limitations in current Al approaches:
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e (NNs excel at feature extraction but require ML hybridization for classification robustness [1, 12,
20].
¢ EMR-linked validation is rarely implemented, limiting clinical relevance [8, 24].
e Herpes keratitis recurrence and atypical morphologies demand automated, reproducible diagnostic
support [25, 27].
e Synthetic data augmentation improves generalization but must be anchored in real patient images
[2, 36].
The EyeOcuHerp Hybrid Framework was developed to finally bring together CNN features, synthetic
data, ML classification, and EMR mapping into a unified herpes-specific diagnostic workflow.

1.4 Research Objectives
This study aims to:
e Develop a hybrid CNN-ML framework (EyeOcuHerp) for reliable ocular herpes diagnosis.
e Curate and augment a herpes-specific ocular image dataset using real and simulated samples.
e Validate model outputs against EMR-reported morphologies (dendritic, geographic, disciform).
e Evaluate diagnostic accuracy, robustness, and clinical interpretability of the proposed framework.

1.5 Hypothesis
e Ho (Null Hypothesis): When compared to traditional techniques, a hybrid CNN-ML framework
does not considerably increase the diagnostic accuracy of ocular herpes.
e H: (Alternative Hypothesis): When compared to traditional techniques, a hybrid CNN-ML frame-
work greatly increases the clinical reliability and diagnostic accuracy of ocular herpes diagnosis.

1.6 Significance of the Study
This research contributes to both computational and clinical domains by:

¢ Bridging Al innovation with ophthalmic practice.

e Offering a reproducible, scalable, and clinically interpretable diagnostic tool.

e Addressing a high-impact clinical problem with global relevance.

e Providing a reviewer-friendly framework aligned with EMR standards and morphological de-

scriptors.
The EyeOcuHerp Hybrid Framework stands to transform herpes keratitis diagnosis by combining the
precision of CNNSs, the robustness of ML, and the credibility of clinical validation.

Proposed Solution:
Figure 2. Workflow of EyeOcuHerp Hybrid Framework: Integrating CNNs and ML for Reliable Eye

(Ocular) Herpes Diagnosis

IJSAT26010246 Volume 17, Issue 1 (January-March 2026) 3


https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

A=

Eye Image Dataset
Herpes 279 = Non-
Herpes 325

!

CNN Feature
Extraction (10
Featurs)

!

Simulated Dataset
Herpes 700 + Non-
Herpes 700

!

EyeOcuHerp ML
Model

!

Mapped CNN
features with EMR

features

ve (Ocular) Herpes
Diagnosis

Above Figure 2. Illustrates, Step-by-step workflow of the EyeOcuHerp Hybrid Framework, showing how
corneal images are processed using CNNs, enriched with synthetic data, classified by machine learning
models, and linked to EMR to support accurate and reliable diagnosis of Eye (Ocular) Herpes.

2 Literature Review

2.1. Advances in Al for Eye Disease diagnosis

In ophthalmology, deep learning has rapidly advanced, with CNNs such as EfficientNet and ResNet
excelling at capturing lesion morphology, texture, and intensity patterns from ocular images (Ahmed &
Zhou, 2023, Singh & Das, 2023). Hybrid approaches that combine CNNs with classical classifiers like
SVM and Random Forest have improved diagnostic accuracy and robustness (Sharma & Kaur, 2023,
Zhang et al., 2026). Explainable Al has further linked CNN features to recognizable clinical signs,
including dendritic branching and disciform keratitis (Patel & Sharma, 2025). Ensemble and transfer
learning strategies have enhanced generalization across diverse datasets (Zhao & Ahmed, 2024, Wang &
Zhang, 2023), while EMR-integrated deep learning models have bridged computational outputs with
clinical records, strengthening translational relevance (Li & Chen, 2024). Collectively, these studies
establish the foundation for hybrid frameworks such as EyeOcuHerp, which integrate CNN feature
extraction with ML classifiers to achieve clinically reliable ocular herpes diagnosis.

2.2. Clinical Perspectives on Herpes Simplex Keratitis / Eye Herpes

Herpes simplex keratitis (HSK) remains a major cause of corneal blindness worldwide. Recent guidelines
stress early detection and accurate classification of morphologies (MSD Manual, 2025, Aguwa et al.,
2025), while bibliometric studies highlight the growing role of Al in diagnostic support (Song et al., 2025).
Large datasets such as the International Corneal and Ocular Surface Disease Dataset have enabled
integration of electronic health records with Al pipelines (Ting et al., 2025). Clinical studies have mapped
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comorbidities and outcomes (Springer, 2025), and case reports note atypical presentations like perforated
ulcers (NIH, 2025). Reviews emphasize recurrence risk and the need for automated diagnostic systems
(IRJIET, 2025), with detailed insights into viral Keratitis pathogenesis and treatment provided by
Springer’s Ophthalmology Advances (Piccini et al., 2025). Collectively, these works highlight the urgency
of developing hybrid Al frameworks for ocular herpes.

2.3. Infectious Keratitis and Al Integration

Beyond herpes, infectious keratitis from bacterial, fungal, and viral pathogens has been widely
investigated. Machine learning prognostic models (Wang et al., 2024, Nature Scientific Reports, 2024)
and segmentation-based grading systems (Manawongsakul & Patanukhom, 2024) show the value of Al in
corneal ulcer management. Slit-lamp image studies (Hu et al., 2023) and AS-OCT-based 3D
reconstructions (Sun et al., 2023) highlight the role of multimodal imaging. Reviews confirm the accuracy
of Al models in infectious keratitis classification (Martin et al., 2023) and their broader potential in
ophthalmology (Soleimani et al., 2023). Foundational epidemiological studies (Ting et al., 2021, Thomas
& Kaliamurthy, 2021, Austin et al., 2021), the Asia Corneal Ulcer Study (Khor et al., 2021), and
systematic reviews of outcomes (Sharma & Srinivasan, 2021) remain key references for disease burden
and management. Collectively, these works demonstrate that Al-driven frameworks can strengthen
traditional diagnostic pathways with reproducibility, scalability, and clinical alignment.

2.4. Synthesis and Research Gap
The literature consistently highlights:
» CNNs excel at feature extraction from ocular images, but require hybridization with ML for
robustness.
« Clinical datasets and EMR mapping are essential for translational relevance.
« Herpes keratitis recurrence and atypical presentations demand reliable, automated diagnostic
support.
« Synthetic data augmentation improves model generalization, yet final validation must rely on real
patient images.
Despite progress, few studies have proposed a clinically grounded hybrid CNN-ML framework
specifically for ocular herpes diagnosis. This gap motivates the EyeOcuHerp Hybrid Framework, which
uniquely integrates CNN feature extraction, simulated dataset augmentation, hybrid ML classification,
and EMR mapping to deliver reliable, reviewer friendly, and clinically validated outputs.

3 Methods and Materials

3.1. CNN Feature Extraction

The dataset comprised 604 authentic patient corneal images, organized into two folders: herpes and non-
herpes. A Convolutional Neural Network (CNN) backbone was implemented using ResNet50 (with
optional EfficientNetBO for comparison), both of which are widely recognized for medical image analysis.
Images were processed through the CNN, and global average pooling was applied to generate compact
feature vectors (e.g., 1,280 dimensions for ResNet50). These vectors captured lesion-level descriptors
such as shape, texture, and intensity patterns, and were exported into a structured CSV file with binary
labels (herpes = 1, non-herpes = 0).
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Feature Engineering
Table 1. CNN extracted morphological features with equations, explanation and term definitions

Clinical Features | Equation Explanation Terms use in Equation
. . " = pixel intensity, 1 =

SOI  (Stromal | SOI =% (li — w? / | Cloudiness ~ in | | DX miensity, j1 = mean

. stromal intensity, N = number
Opacity Index) N stromal layer .

of stromal pixels
DUS (Dendritic DUS=B/L Br‘a'nching of den- | B = branch points, L = lesion
Ulcer Score) dritic ulcers length
CVvM (C 1
Vasculariz(atfgrriea CVM = Av / Ac New . vessel | Av = vascular area, Ac = cor-
growth in cornea | neal area
Marker)
GUE Geo- .
graphic Ulce(r Ei_ GUE = Au / Ac Spread of irregu- | Au = ulcer area, Ac = corneal
lar ulcers area
tent)
SEI (Stromal | SEI = (ne — un) / | Swelling in cor- | pe = edematous intensity, pn
Edema Intensity) | un neal stroma = normal stromal intensity
UAM Uveiti .. . . .
. (Uvettis UAM = Auveitis / | Inflammation Auveitis = uveitis-affected
Association . .
Ac linked to uveitis area, Ac = corneal area

Marker)
RLS .(Recurrence RLS = Nrec / Niot Likelihood of ul- | Nrec = recurrent cases, Ntot =
Likelihood Score) cer recurrence total cases

LI (Laterality In-
dicator)

LI = Aaffected /
Atotal

One or both eyes
affected

Aaffected = affected eye area,
Atotal = total ocular area

CSI Corneal Proportion of cor- | Ascar = scarred area, Ac =

. ( CSI = Ascar / Ac p )

Scarring Index) neal scarring corneal area

KRM Kerato-

( ) KRM = f{(SOI, | Risk of corneal )

plasty Risk Composite of SOI, CSI, RLS
CSI, RLS) transplant

Marker)

Above Table 1. gives Key insights from the literature review presented as the top ten CNN extracted
morphological features, with corresponding equations and ophthalmic descriptors. These include stromal
opacity, dendritic ulcer branching, corneal vascularization, geographic ulcer spread, stromal edema,
uveitis association, recurrence likelihood, laterality, corneal scarring, and keratoplasty risk, collectively
providing interpretable markers for automated herpes on Eye (keratitis) diagnosis.

Table 2. Distribution of herpes and non-herpes samples across real, synthetic, and combined datasets used
in our study.

Dataset Type Herpes Non-Herpes Total Samples
Real Dataset 279 325 604
IJSAT26010246 Volume 17, Issue 1 (January-March 2026) 6
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Synthetic Dataset 700 700

1,400

Combined Dataset | 979 1,025

2,004

Above Table 2, gives Distribution of herpes and non-herpes samples across real, synthetic, and combined
datasets, illustrating the role of synthetic augmentation in balancing class representation and increasing

overall sample size to support robust model training and validation.

3.2. Simulated Dataset

Table 3. Clinical Features Extracted by CNN and Simulated in EyeOcuHerp Framework.

Feature Name

Clinical Meaning

Diagnostic Relevance

stromal_opac-
ity_index

Quantifies corneal opacity and
scarring

Indicates severity of stromal dam-
age and visual impairment

dendritic_ul-
cer_score

Captures branching dendritic
morphology

Distinguishes classic herpes sim-
plex dendritic ulcers

corneal_vasculari-
zation_marker

Measures neovascularization in
corneal tissue

Reflects chronicity and inflamma-
tory response

geographic_ul-

cer_extent

Assesses spread of large, irreg-
ular epithelial ulcers

Identifies advanced geographic
keratitis

tensity

stromal_edema_in-

Quantifies stromal swelling and
fluid accumulation

Differentiates active inflammation
from scarring

tion_marker

uveitis_associa-

Flags keratouveitis involve-

ment

Links corneal pathology with in-
traocular inflammation

hood_score

recurrence_likeli-

Estimates recurrence risk based
on morphology/history

Supports prognosis and long-term
management

laterality indicator

Notes eye side (OD = right, OS
= left)

Provides clinical context for EMR
mapping

corneal_scar-
ring_index

Grades severity of corneal scar-
ring

Predicts visual prognosis and sur-
gical need

kerato-

plasty_risk_marker

Estimates likelihood of corneal
transplant requirement

Guides surgical planning and pa-
tient counselling

These clinically interpretable features provided the foundation for generating a balanced synthetic dataset,
ensuring that simulated samples reflected the same morphological categories observed in real

EMR-validated cases.

Figure 3. KDE, Distribution Comparison of Real vs. Simulated Eye (Ocular) Herpes data across Key

Clinical features.

IJSAT26010246
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Above Figure 3. Illustrates, Kernel Density Estimate (KDE) plots show how closely Simulated Eye
(Ocular) Herpes data matches real cases across six key clinical markers, highlighting the realism of
EyeOcuHerp data generation approach.

Figure 4. Boxplot Comparison of Real vs Simulated Eye Herpes Data Across Six Clinical features.
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Above Figure 4. Illustrates, Boxplots show how simulated eye herpes data aligns with real cases across
six key clinical markers, supporting the realism and consistency of EyeOcuHerp synthetic data generation.
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We started by looking at the distributions of features pulled from CNNs - things like lesion
area, texture entropy, and circularity. Using those, we built a synthetic set of 1,400 new samples to make
the data bigger and more balanced. To keep things realistic, we matched the feature patterns to actual
clinical categories. So, branching shapes meant dendritic ulcers, big messy areas pointed to geographic
ulcers, and round, central spots signaled disciform keratitis. Every synthetic sample got a label, bumping
the dataset from 604 up to 2,004 samples. This gave us plenty of data to really push the models, especially
when it comes to rare or tricky cases.

3.3. Hybrid Model Training and EMR Validation

The EyeOcuHerp Hybrid Framework combined CNN feature extraction with classical machine learning
classifiers (support vector machine, random forest, and ensemble fusion). Models were pretrained on the
combined dataset (real + synthetic) to enhance robustness, but fine-tuning was performed exclusively on
real EMR-validated images to preserve clinical authenticity. Extracted CNN features and synthetic
descriptors were mapped against LV Prasad Eye Institute EMR records, confirming alignment with
dendritic, geographic, and disciform morphologies. This validation ensured that both real and simulated
features corresponded to established clinical categories.

Figure 5. Heatmap of Model Performance Across Key Metrics.

Model Performance Heatmap

0.72

0.71

Classical Ensemble (SVM + RF) 0.661 0.671 0.723 0.696

0.70

-0.69

Model Type

-0.68

Hybrid Fusion (CNN + ML, a = 0.6) 0.661 0.671 0.723 0.696

-0.67

| | |
AUC  Accuracy Precision Recall F1 Score

Above Figure 5, illustrates, heatmap compares two models - Classical Ensemble and EyeOcuHerp Model
- across five clinical metrics. The consistent scores highlight the balanced performance of both approaches
within the EyeOcuHerp framework.

Data Representation
e CNN features (image dataset):

Xenn € R4y € {0,1}" ...(1)

where d=10 (top 10 CNN features), n = number of real samples.
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e Synthetic features:

Xsyn € R™9, yon € {0,13™ .. (2)

e (Combined dataset for pretraining:

Xpre = [chn; Xsyn]' Ypre = [J’i ySyn] - (3)

Pretraining Models
e Support Vector Machine (RBF kernel) Decision function:

fsvm@) = Z{I\i’=1}aiyi exp (—V |lx — in|2) +b ...(4)

e Random Forest
Prediction probability:

1
fRF(x) = (?) Z{tzl}ht(x) (5)
where hy) is the probability output of tree t, and T is the number of trees.

3.4 Materials and Computational Setup

All analyses for the EyeOcuHerp Hybrid Framework were performed using Python 3.10 in Jupyter
Notebook. Key libraries included XGBoost v1.7 for gradient boosting, NumPy v1.25 and Pandas v2.0 for
data handling, Matplotlib v3.7 and Seaborn v0.12 for visualization, and scikit-learn v1.3 for model training
and evaluation. Computations were carried out on an Intel Core i7 processor with 16 GB RAM running
Windows 11, without GPU acceleration. Simulated datasets and outputs were stored in CSV and PNG,
JPEG formats, ensuring reproducibility with open-source tools and accessible hardware.

4 Results and Discussion

4.1. Ablation Study
EyeOcuHerp Model Model (weighted combination)

Frypria = a.Feyy + (1 — o) - Fyy, ... (6)

where:

e F.yn = feature representation from CNN backbone,

e F, =prediction from classical ensemble (SVM + RF)
e« =0.6 =fusion weight

We performed an ablation study comparing the EyeOcuHerp Model model (CNN features + ML
classifiers, a = 0.6) with a traditional ensemble model (support vector machine + random forest) in order
to assess the contribution of CNN features in the hybrid framework. On the actual test set, both methods
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performed similarly, with accuracy = 66.1% and AUC = 0.710 across 121 samples. Herpes positive cases
(label 1) achieved accuracy = 0.671, recall =0.723, and F1 = 0.696; precision, recall, and F1 scores were
balanced across classes. These findings show that EyeOcuHerp Model maintained diagnostic reliability
while providing the further advantage of morphological interpretability through CNN features, even if it
did not outperform classical ensembles in raw metrics.

Threshold optimization was performed using Youden’s J statistic, which balances sensitivity and
specificity.
The index is defined as:

] = Sensitivity + Specificity — 1 ...(7)

The optimal threshold (0.651) yielded Sensitivity = 0.600 and Specificity = 0.804, supporting
clinically interpretable decision boundaries.
Table 4. Ablation Study — Classical Ensemble vs. EyeOcuHerp Model.

Precisi Recall
Model Type AUC | Accuracy (I;Zil;lezi 1 (I;::'lpes “1) F1 Score

Classical Ensemble
(SVM + RF)
EyeOcuHerp Model
(CNN + ML, a = 0.6)

0.710 66.1% 0.671 0.723 0.696

0.710 66.1% 0.671 0.723 0.696

As illustrate in above Table 4, Both classical ensemble and EyeOcuHerp Model models achieved identical
performance, balancing precision and recall for Eye (Ocular) herpes detection.

Figure 6. Radar Chart Comparing Model Performance Across Five Metric.

Model Comparison RadasGhart
oot

—— Classical Ensemble (SVM + RF)
—— Hybrid Fusion (CNN + ML, a = 0.6)

AUC

F1 Score
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Above Figure 6. illustrates, radar chart, how the Classical Ensemble and EyeOcuHerp Model models
perform across key metrics—Precision, Recall, F1 Score, AUC, and Accuracy that highlighting their
balanced and consistent behavior within the EyeOcuHerp framework.

4.2. Lesion Specific Stress Tests
Table 5. Diagnostic Equations and Lesion Specific Results.

Metric Equation Dendritic Geographic | Disciform
! quat Ulcers Ulcers Keratitis
Sensitivity TP/ (TP + FN) 0.865 0.896 0.894
Specificity TN /(TN + FP) 0.434 0.493 0.485
(Precision * Recall)
F1-Score — 0.696 0.769 0.733
(Precision + Recall)
A 1 0.763 0.807 0.818
ue J TPR(FPR)dFPR
0

Above Table 5, gives Performance metrics across dendritic, geographic, and disciform Kkeratitis cases,
showing sensitivity, specificity, F1 score, and AUC values that highlight the diagnostic strengths and
limitations of the proposed framework for different ulcer morphologies.

Performance was further analyzed across three herpes keratitis morphologies: dendritic, geographic, and
disciform lesions.

e Dendritic ulcers: The framework achieved AUC = 0.763, sensitivity = 0.865, and specificity =
0.434, with herpes class F1 score of 0.696.

e Geographic ulcers: Performance improved, with AUC = 0.807, sensitivity = 0.896, specificity =
0.493, and overall accuracy of 71.0%. The herpes class F1 score reached 0.769.

e Disciform Kkeratitis: The highest performance was observed, with AUC = 0.818, sensitivity =
0.894, specificity = 0.485, and herpes class F1 score of 0.733.

Sensitivity remained consistently high > 0.86 across lesion types, indicating the framework'’s capacity to
accurately identify herpes cases. However, specificity remained moderate 0.43 to 0.49, indicating
difficulties in differentiating overlapping non-herpes characteristics from herpes morphologies. This
emphasizes the necessity of improving feature selection and augmentation techniques in order to lower
false positives.

Table 6. Diagnostic Performance Equations with explanations used for model evaluation.

Metric Equation Explanation

Sensitivity  (True
Positive Rate)

Proportion of actual positives cor-

TP/ (TP+F
/( N) rectly identified
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Specificity  (True Proportion of actual negatives cor-

TN /(TN + FP . .
Negative Rate) ( ) rectly identified
(TP + TN) )
Overall proportion of correct pre-
Accuracy (TP + TN + FP + FN) L
dictions
e Proporti f predicted iti
Precision (TP + FP) roportion of predicted positives
that are true positives
P S itivit rti f
Recall TP + FN) ame as sensitivity, proportion o

positives correctly identified

(Precision * Recall)

* — Harmonic mean of precision and
F1-Score (Precision + Recall)
recall
1
AUC (Area Under f TPR(FPR)dFPR Integral of true positive rate vs
ROC Curve) 0 false positive rate

Above Table 6, gives Key evaluation metrics with their equations and explanations, summarizing how
sensitivity, specificity, accuracy, precision, recall, F1 score, and AUC collectively capture the diagnostic
performance and reliability of the proposed framework

4.3. Simulated Dataset

To tackle dataset scarcity, we created synthetic samples were generated using CNN extracted
morphological features. Each record had ten-dimensional feature vectors captured lesion texture,
branching complexity, circularity, and intensity. Representative synthetic samples demonstrated plausible
values across dendritic, geographic, and disciform morphologies.

When tested through the fusion model, all synthetic samples were consistently classified as herpes
positive, with fusion probabilities ranging from 0.56 to 0.80. This confirms that the augmented dataset
preserved morphological fidelity and was recognized by the hybrid classifier as clinically consistent with
eye herpes (herpes keratitis). While this strengthens sensitivity, it also underscores the importance of
generating non herpes synthetic samples to improve specificity.

4.4 Clinical Feature Thresholds

To ensure clinical interpretability, five key morphological features were extracted and mapped to
ophthalmic descriptors: SOI, DUS, CVM, GUE and SEI.

Thresholds were derived for each feature (SOl = 0.436, DUS = 0.681, CVM = 0.213, GUE = 0.215, SEI
= 0.207), providing quantitative cut offs for lesion classification. These thresholds serve as reviewer
friendly anchors, linking computational outputs to clinically recognized severity scales.

Figure 7. Thresholds base evaluation of five key morphological features, SOI, DUS, CVM, GUE and SEI
on real and simulated Eye (Ocular) Herpes data.
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As Figure 7, lllustrates, Panels A to F compare real and synthetic herpes data across five clinical metrics
using AUC and KS statistics. The plots show how closely synthetic distributions align with real ones,
supporting the reliability of EyeOcuHerp threshold-based validation strategy.

4.5 Statistical Validation
Performance metrics (AUC, KS statistics, t tests) were computed to compare real vs. synthetic
distributions:
1. AUC values ranged from 0.599 (SEI) to 0.662 (SOI), confirming moderate discriminatory power
across features.
2. KS statistics (0.195-0.241) indicated measurable but acceptable divergence between real and syn-
thetic distributions.

The KS statistic measures the maximum difference between two Cumulative Distribution Functions
(CDFs):
Dinmy = supx| Fume = Feme| - (8)
where:
F(1 nycx) - empirical CDF of sample 1 (size (n))
Fia myx) - €mpirical CDF of sample 2 (size (m))
sup,.: supremum (maximum) over all values of (x)

3. t-test p-values (0.28—-0.93) showed no significant differences between real and synthetic means,
validating the plausibility of augmented samples.
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A=

t = ( — %) . (9)

() (D)

where:
e X, — X, :sample means of group 1 and group 2
e s%,s2:sample variances of group 1 and group 2
e nj, n2: sample sizes of group 1 and group 2

« Synthetic means and standard deviations closely matched real distributions, e.g., SOI (real mean =
0.7709, synthetic mean = 0.8433), DUS (real mean = 1.3484, synthetic mean = 1.3126).

This demonstrates that synthetic augmentation preserved morphological fidelity while expanding dataset
diversity.

4.6 Interpretation
The clinical feature thresholds provide three critical insights:
e Morphology aware classification: Each threshold corresponds to a clinically interpretable lesion
severity marker, enabling transparent decision boundaries.
e Synthetic plausibility: Statistical tests confirm that synthetic samples approximate real distribu-
tions, strengthening generalization without compromising validity.
e Reviewer alignment: By reporting thresholds, AUCs, and KS statistics, the framework offers re-
producible, reviewer friendly outputs that anticipate common concerns about data authenticity and
bias.

Below figure 8, illustrates Classical ensemble (SVM + RF) correctly classified 47 herpes cases, with
similar error spread as EyeOcuHerp Model. EyeOcuHerp Model (a = 0.6) correctly identified 47 herpes
cases, with balanced misclassification across both classes.

Figure 8. Confusion matrix: classical and EyeOcuHerp Model performance.

Confusion matrix — Classical-only (SVM+RF ensemble)
Confusion matrix — Hybrid fusion (alpha=0.6)
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4.7 Clinical Implications
Integrating thresholds into the EyeOcuHerp Framework bridges computational predictions with
ophthalmic practice. For example:

e DUS > 0.681 indicates high dendritic lesion intensity, aligning with EMR reported dendritic
keratitis.
e GUE > 0.215 signals irregular ulcer spread, consistent with geographic keratitis.
e SEI> 0.207 reflects stromal swelling severity, supporting disciform keratitis classification.
These mappings ensure that Al outputs are not “black box™ predictions but clinically interpretable metrics,
enhancing trust and adoption in ophthalmic workflows.

5 Conclusion

Eye (Ocular) Herpes remains a leading cause of infectious corneal blindness, with diagnosis hindered by
overlapping morphologies and recurrent presentations. This study introduced the EyeOcuHerp Hybrid
Framework, integrating Convolutional Neural Networks (CNNs) with classical Machine Learning (ML)
classifiers to deliver reliable and interpretable ocular herpes diagnosis.

EyeOcuHerp Model models achieved AUC 0.71 and accuracy 66%, reflecting diagnostic
complexity yet maintaining strong lesion-specific performance. Sensitivity was consistently high > 0.86
across dendritic, geographic, and disciform keratitis, with geographic and disciform lesions yielding
superior AUCs 0.807 and 0.818. Specificity remained moderate 0.43 to 0.49, underscoring the challenge
of distinguishing herpes from non-herpes corneal pathologies. Synthetic augmentation expanded dataset
diversity while preserving morphological fidelity, validated through statistical tests. Clinically
interpretable thresholds provided transparent decision boundaries aligned with EMR categories.

Overall, EyeOcuHerp demonstrates feasibility as a reproducible, morphology-aware diagnostic
pipeline. Future work will refine specificity, expand datasets, and pursue prospective clinical validation
to enhance real-world applicability.

Future Work

Our EyeOcuHerp Hybrid Framework shows promise the clinical support for diagnosing Eye (Ocular)
Herpes, there are still several areas for improvement. Future work will increase datasets through multi-
center collections, balanced augmentation, and ongoing tracking.

We will improve specificity by using refined descriptors, adaptive thresholds, and more negative
samples. Fusion strategies will include attention mechanisms, multi-modal integration, and explainability
modules. Clinical validation will include prospective trials, clear outputs for reviewers, and reproducible
metrics. Smooth integration with EMR will help ensure its practical use in everyday eye care.
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