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Abstract 

Herpes (NAGIN) on Eye / Ocular Herpes is a major cause of infectious corneal blindness, often 

difficult to diagnose due to overlapping morphological features. We tackle this challenge, by proposing 

EyeOcuHerp Hybrid Framework, blending Convolutional Neural Networks (CNNs) for feature extraction 

with classical Machine Learning (ML) classifiers to produce trustworthy Herpes on Eye (ocular herpes) 

diagnosis. 

We worked with 604 (279 herpes lesions and 325 without) corneal images, plus 1,400 (700 each) 

synthetic samples generated from CNN-based feature patterns to keep lesion categories balanced. 

Checking LV Prasad Eye Institute’s EMR records confirmed that both the real and synthetic features 

matched clinically recognized patterns: dendritic, geographic, and disciform keratitis, like branching lines 

seen under a slit lamp, proving their authenticity. 

Performance analysis revealed that, the EyeOcuHerp Model models reached AUC of 0.71 and 

accuracy 66%, matching classical ensembles, while keeping results interpretable through CNN based 

morphological features that highlight subtle texture patterns. Lesion specific stress tests showed reliably 

high sensitivity, above 0.86 for every morphology, while geographic and disciform types stood out with 

AUCs of 0.807 and 0.818. Specificity stayed moderate, 0.43 and 0.49 which shows just how hard it is to 

tell a herpes lesion from other corneal lesions, especially when both look equally cloudy under the slit 

lamp. Synthetic augmentation boosted the dataset’s variety, and a quick run of stats showed it matched 

real-world patterns almost perfectly.  

Overall, EyeOcuHerp shows practical, diagnostic process. Future studies will focus on larger 

datasets, sharpening specificity, and testing results to better ophthalmic care. 
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1. Introduction 

1.1 Background 

Herpes on Eye (Nagin) is a leading cause of infectious corneal blindness globally, contributing 

significantly to ocular morbidity and recurrent vision loss [21, 25, 31]. The clinical spectrum of HSK 

includes dendritic ulcers, geographic lesions, and disciform keratitis, often mimicking other corneal 

pathologies and complicating diagnosis [27, 30]. Slit-lamp examination remains the primary diagnostic 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 
E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT26010246 Volume 17, Issue 1 (January-March 2026) 2 

 

modality, yet its reliance on subjective interpretation introduces variability across practitioners and 

settings [29]. 

In recent years, Artificial Intelligence (AI) has emerged as a transformative tool in ophthalmology. CNNs 

have demonstrated exceptional performance in extracting morphological features from ocular images, 

including lesion shape, texture, and intensity [1, 11, 15]. When combined with classical ML classifiers 

such as support vector machines (SVM) and random forests, these hybrid models offer improved 

robustness and diagnostic accuracy [12, 20]. Explainable AI further enhances clinical interpretability by 

linking CNN-derived features to recognizable morphologies such as dendritic branching and disciform 

patterns [5]. 

Despite these advances, most AI applications in ophthalmology focus on retinal diseases or general corneal 

infections, with limited attention to herpes-specific morphologies. Moreover, few models integrate 

Electronic Medical Record (EMR) validation, which is essential for clinical translation [8, 24]. This gap 

underscores the need for a dedicated, clinically grounded AI framework for ocular herpes diagnosis. 

 

1.2 Problem Statement 

In spite of AI's potential in ophthalmic diagnostics, automated identification of ocular herpes is still in its 

infancy. Current models sometimes fail to incorporate EMR-based validation, lack training data unique to 

herpes, and struggle with the heterogeneity of herpes presentations. The absence of a robust, hybrid CNN-

ML framework tailored to Eye (Ocular) Herpes causes uncertainty in diagnosis, treatment delays, and 

subpar patient outcomes [21, 25, 28]. 

 

Figure 1. (a) Eye (Ocular) Herpes signs on face and eye, (b) Dendritic-ulcer-scaled image. 

 
 

Above Figure 1. (a) Present clear picture of Eye (Ocular) Herpes on face and eye, (b) is Dendritic-ulcer-

scaled image from L V Prasad Eye Institute. 

 

1.3 Research Gap 

The literature reveals several limitations in current AI approaches: 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 
E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT26010246 Volume 17, Issue 1 (January-March 2026) 3 

 

 CNNs excel at feature extraction but require ML hybridization for classification robustness [1, 12, 

20]. 

 EMR-linked validation is rarely implemented, limiting clinical relevance [8, 24]. 

 Herpes keratitis recurrence and atypical morphologies demand automated, reproducible diagnostic 

support [25, 27]. 

 Synthetic data augmentation improves generalization but must be anchored in real patient images 

[2, 36]. 

The EyeOcuHerp Hybrid Framework was developed to finally bring together CNN features, synthetic 

data, ML classification, and EMR mapping into a unified herpes‑specific diagnostic workflow. 

 

1.4 Research Objectives 

This study aims to: 

 Develop a hybrid CNN-ML framework (EyeOcuHerp) for reliable ocular herpes diagnosis. 

 Curate and augment a herpes-specific ocular image dataset using real and simulated samples. 

 Validate model outputs against EMR-reported morphologies (dendritic, geographic, disciform). 

 Evaluate diagnostic accuracy, robustness, and clinical interpretability of the proposed framework. 

 

1.5 Hypothesis 

 H0 (Null Hypothesis): When compared to traditional techniques, a hybrid CNN-ML framework 

does not considerably increase the diagnostic accuracy of ocular herpes. 

 H₁ (Alternative Hypothesis): When compared to traditional techniques, a hybrid CNN-ML frame-

work greatly increases the clinical reliability and diagnostic accuracy of ocular herpes diagnosis. 

 

1.6 Significance of the Study 

This research contributes to both computational and clinical domains by: 

 Bridging AI innovation with ophthalmic practice. 

 Offering a reproducible, scalable, and clinically interpretable diagnostic tool. 

 Addressing a high-impact clinical problem with global relevance. 

 Providing a reviewer-friendly framework aligned with EMR standards and morphological de-

scriptors. 

The EyeOcuHerp Hybrid Framework stands to transform herpes keratitis diagnosis by combining the 

precision of CNNs, the robustness of ML, and the credibility of clinical validation. 

 

Proposed Solution: 

Figure 2. Workflow of EyeOcuHerp Hybrid Framework: Integrating CNNs and ML for Reliable Eye 

(Ocular) Herpes Diagnosis 
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Above Figure 2. Illustrates, Step-by-step workflow of the EyeOcuHerp Hybrid Framework, showing how 

corneal images are processed using CNNs, enriched with synthetic data, classified by machine learning 

models, and linked to EMR to support accurate and reliable diagnosis of Eye (Ocular) Herpes. 

 

2 Literature Review 

 

2.1. Advances in AI for Eye Disease diagnosis 

In ophthalmology, deep learning has rapidly advanced, with CNNs such as EfficientNet and ResNet 

excelling at capturing lesion morphology, texture, and intensity patterns from ocular images (Ahmed & 

Zhou, 2023, Singh & Das, 2023). Hybrid approaches that combine CNNs with classical classifiers like 

SVM and Random Forest have improved diagnostic accuracy and robustness (Sharma & Kaur, 2023, 

Zhang et al., 2026). Explainable AI has further linked CNN features to recognizable clinical signs, 

including dendritic branching and disciform keratitis (Patel & Sharma, 2025). Ensemble and transfer 

learning strategies have enhanced generalization across diverse datasets (Zhao & Ahmed, 2024, Wang & 

Zhang, 2023), while EMR‑integrated deep learning models have bridged computational outputs with 

clinical records, strengthening translational relevance (Li & Chen, 2024). Collectively, these studies 

establish the foundation for hybrid frameworks such as EyeOcuHerp, which integrate CNN feature 

extraction with ML classifiers to achieve clinically reliable ocular herpes diagnosis. 

 

2.2. Clinical Perspectives on Herpes Simplex Keratitis / Eye Herpes   

Herpes simplex keratitis (HSK) remains a major cause of corneal blindness worldwide. Recent guidelines 

stress early detection and accurate classification of morphologies (MSD Manual, 2025, Aguwa et al., 

2025), while bibliometric studies highlight the growing role of AI in diagnostic support (Song et al., 2025). 

Large datasets such as the International Corneal and Ocular Surface Disease Dataset have enabled 

integration of electronic health records with AI pipelines (Ting et al., 2025). Clinical studies have mapped 
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comorbidities and outcomes (Springer, 2025), and case reports note atypical presentations like perforated 

ulcers (NIH, 2025). Reviews emphasize recurrence risk and the need for automated diagnostic systems 

(IRJIET, 2025), with detailed insights into viral keratitis pathogenesis and treatment provided by 

Springer’s Ophthalmology Advances (Piccini et al., 2025). Collectively, these works highlight the urgency 

of developing hybrid AI frameworks for ocular herpes. 

 

2.3. Infectious Keratitis and AI Integration  

Beyond herpes, infectious keratitis from bacterial, fungal, and viral pathogens has been widely 

investigated. Machine learning prognostic models (Wang et al., 2024, Nature Scientific Reports, 2024) 

and segmentation‑based grading systems (Manawongsakul & Patanukhom, 2024) show the value of AI in 

corneal ulcer management. Slit‑lamp image studies (Hu et al., 2023) and AS‑OCT‑based 3D 

reconstructions (Sun et al., 2023) highlight the role of multimodal imaging. Reviews confirm the accuracy 

of AI models in infectious keratitis classification (Martín et al., 2023) and their broader potential in 

ophthalmology (Soleimani et al., 2023). Foundational epidemiological studies (Ting et al., 2021, Thomas 

& Kaliamurthy, 2021, Austin et al., 2021), the Asia Corneal Ulcer Study (Khor et al., 2021), and 

systematic reviews of outcomes (Sharma & Srinivasan, 2021) remain key references for disease burden 

and management. Collectively, these works demonstrate that AI‑driven frameworks can strengthen 

traditional diagnostic pathways with reproducibility, scalability, and clinical alignment. 

 

2.4. Synthesis and Research Gap 

The literature consistently highlights: 

• CNNs excel at feature extraction from ocular images, but require hybridization with ML for 

   robustness. 

• Clinical datasets and EMR mapping are essential for translational relevance. 

• Herpes keratitis recurrence and atypical presentations demand reliable, automated diagnostic  

  support. 

• Synthetic data augmentation improves model generalization, yet final validation must rely on real  

   patient images. 

Despite progress, few studies have proposed a clinically grounded hybrid CNN-ML framework 

specifically for ocular herpes diagnosis. This gap motivates the EyeOcuHerp Hybrid Framework, which 

uniquely integrates CNN feature extraction, simulated dataset augmentation, hybrid ML classification, 

and EMR mapping to deliver reliable, reviewer friendly, and clinically validated outputs. 

 

3 Methods and Materials 

 

3.1. CNN Feature Extraction  

The dataset comprised 604 authentic patient corneal images, organized into two folders: herpes and non-

herpes. A Convolutional Neural Network (CNN) backbone was implemented using ResNet50 (with 

optional EfficientNetB0 for comparison), both of which are widely recognized for medical image analysis. 

Images were processed through the CNN, and global average pooling was applied to generate compact 

feature vectors (e.g., 1,280 dimensions for ResNet50). These vectors captured lesion‑level descriptors 

such as shape, texture, and intensity patterns, and were exported into a structured CSV file with binary 

labels (herpes = 1, non‑herpes = 0). 
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Feature Engineering 

Table 1. CNN extracted morphological features with equations, explanation and term definitions 

 

Clinical Features Equation Explanation Terms use in Equation 

SOI (Stromal 

Opacity Index) 

SOI = Σ (Ii – μ)² / 

N 

Cloudiness in 

stromal layer 

Ii = pixel intensity, μ = mean 

stromal intensity, N = number 

of stromal pixels 

DUS (Dendritic 

Ulcer Score) 
DUS = B / L 

Branching of den-

dritic ulcers 

B = branch points, L = lesion 

length 

CVM (Corneal 

Vascularization 

Marker) 

CVM = Av / Ac 
New vessel 

growth in cornea 

Av = vascular area, Ac = cor-

neal area 

GUE (Geo-

graphic Ulcer Ex-

tent) 

GUE = Au / Ac 
Spread of irregu-

lar ulcers 

Au = ulcer area, Ac = corneal 

area 

SEI (Stromal 

Edema Intensity) 

SEI = (μe – μn) / 

μn 

Swelling in cor-

neal stroma 

μe = edematous intensity, μn 

= normal stromal intensity 

UAM (Uveitis 

Association 

Marker) 

UAM = Auveitis / 

Ac 

Inflammation 

linked to uveitis 

Auveitis = uveitis-affected 

area, Ac = corneal area 

RLS (Recurrence 

Likelihood Score) 
RLS = Nrec / Ntot 

Likelihood of ul-

cer recurrence 

Nrec = recurrent cases, Ntot = 

total cases 

LI (Laterality In-

dicator) 

LI = Aaffected / 

Atotal 

One or both eyes 

affected 

Aaffected = affected eye area, 

Atotal = total ocular area 

CSI (Corneal 

Scarring Index) 
CSI = Ascar / Ac 

Proportion of cor-

neal scarring 

Ascar = scarred area, Ac = 

corneal area 

KRM (Kerato-

plasty Risk 

Marker) 

KRM = f(SOI, 

CSI, RLS) 

Risk of corneal 

transplant 
Composite of SOI, CSI, RLS 

 

Above Table 1. gives Key insights from the literature review presented as the top ten CNN extracted 

morphological features, with corresponding equations and ophthalmic descriptors. These include stromal 

opacity, dendritic ulcer branching, corneal vascularization, geographic ulcer spread, stromal edema, 

uveitis association, recurrence likelihood, laterality, corneal scarring, and keratoplasty risk, collectively 

providing interpretable markers for automated herpes on Eye (keratitis) diagnosis. 

 

Table 2. Distribution of herpes and non‑herpes samples across real, synthetic, and combined datasets used 

in our study. 

 

Dataset Type Herpes Non-Herpes  Total Samples 

Real Dataset 279 325 604 
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Synthetic Dataset 700 700 1,400 

Combined Dataset 979 1,025 2,004 

 

Above Table 2, gives Distribution of herpes and non‑herpes samples across real, synthetic, and combined 

datasets, illustrating the role of synthetic augmentation in balancing class representation and increasing 

overall sample size to support robust model training and validation. 

 

3.2. Simulated Dataset 

 

Table 3. Clinical Features Extracted by CNN and Simulated in EyeOcuHerp Framework. 

 

Feature Name 
 

Clinical Meaning  
Diagnostic Relevance 

stromal_opac-

ity_index 

Quantifies corneal opacity and 

scarring 

Indicates severity of stromal dam-

age and visual impairment 

dendritic_ul-

cer_score 

Captures branching dendritic 

morphology 

Distinguishes classic herpes sim-

plex dendritic ulcers 

corneal_vasculari-

zation_marker 

Measures neovascularization in 

corneal tissue 

Reflects chronicity and inflamma-

tory response 

geographic_ul-

cer_extent 

Assesses spread of large, irreg-

ular epithelial ulcers 

Identifies advanced geographic 

keratitis 

stromal_edema_in-

tensity 

Quantifies stromal swelling and 

fluid accumulation 

Differentiates active inflammation 

from scarring 

uveitis_associa-

tion_marker 

Flags keratouveitis involve-

ment 

Links corneal pathology with in-

traocular inflammation 

recurrence_likeli-

hood_score 

Estimates recurrence risk based 

on morphology/history 

Supports prognosis and long-term 

management 

laterality_indicator 
Notes eye side (OD = right, OS 

= left) 

Provides clinical context for EMR 

mapping 

corneal_scar-

ring_index 

Grades severity of corneal scar-

ring 

Predicts visual prognosis and sur-

gical need 

kerato-

plasty_risk_marker 

Estimates likelihood of corneal 

transplant requirement 

Guides surgical planning and pa-

tient counselling 

 

These clinically interpretable features provided the foundation for generating a balanced synthetic dataset, 

ensuring that simulated samples reflected the same morphological categories observed in real 

EMR‑validated cases. 

 

Figure 3. KDE, Distribution Comparison of Real vs. Simulated Eye (Ocular) Herpes data across Key 

Clinical features. 
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Above Figure 3. Illustrates, Kernel Density Estimate (KDE) plots show how closely Simulated Eye 

(Ocular) Herpes data matches real cases across six key clinical markers, highlighting the realism of 

EyeOcuHerp data generation approach. 

 

Figure 4. Boxplot Comparison of Real vs Simulated Eye Herpes Data Across Six Clinical features. 

 

 
 

Above Figure 4. Illustrates, Boxplots show how simulated eye herpes data aligns with real cases across 

six key clinical markers, supporting the realism and consistency of EyeOcuHerp synthetic data generation. 
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 We started by looking at the distributions of features pulled from CNNs - things like lesion 

area, texture entropy, and circularity. Using those, we built a synthetic set of 1,400 new samples to make 

the data bigger and more balanced. To keep things realistic, we matched the feature patterns to actual 

clinical categories. So, branching shapes meant dendritic ulcers, big messy areas pointed to geographic 

ulcers, and round, central spots signaled disciform keratitis. Every synthetic sample got a label, bumping 

the dataset from 604 up to 2,004 samples. This gave us plenty of data to really push the models, especially 

when it comes to rare or tricky cases. 

 

3.3. Hybrid Model Training and EMR Validation 

The EyeOcuHerp Hybrid Framework combined CNN feature extraction with classical machine learning 

classifiers (support vector machine, random forest, and ensemble fusion). Models were pretrained on the 

combined dataset (real + synthetic) to enhance robustness, but fine‑tuning was performed exclusively on 

real EMR‑validated images to preserve clinical authenticity. Extracted CNN features and synthetic 

descriptors were mapped against LV Prasad Eye Institute EMR records, confirming alignment with 

dendritic, geographic, and disciform morphologies. This validation ensured that both real and simulated 

features corresponded to established clinical categories. 

 

Figure 5. Heatmap of Model Performance Across Key Metrics. 

 

 
Above Figure 5, illustrates, heatmap compares two models - Classical Ensemble and EyeOcuHerp Model 

- across five clinical metrics. The consistent scores highlight the balanced performance of both approaches 

within the EyeOcuHerp framework. 

 

 Data Representation 

 CNN features (image dataset): 

𝑋𝑐𝑛𝑛 ∈  ℝ𝑛×𝑑 ,   𝑦 ∈  {0,1}𝑛 … (1) 

 

where d=10 (top 10 CNN features), n = number of real samples. 
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 Synthetic features: 

𝑋𝑠𝑦𝑛 ∈  ℝ𝑚×𝑑,   𝑦𝑠𝑦𝑛 ∈  {0,1}𝑚  … (2) 

 

 Combined dataset for pretraining: 

𝑋𝑝𝑟𝑒 =  [𝑋𝑐𝑛𝑛;  𝑋𝑠𝑦𝑛],   𝑦𝑝𝑟𝑒 =  [𝑦 ; 𝑦𝑠𝑦𝑛]  … (3) 

 

Pretraining Models 

 Support Vector Machine (RBF kernel) Decision function: 

𝑓𝑆𝑉𝑀(𝑥) = 𝛴{𝑖=1}
𝑁 𝛼𝑖𝑦𝑖 exp (−𝛾 ||𝑥 −  𝑥𝑖||

2
) +  𝑏  … (4) 

 

 Random Forest 

Prediction probability: 

𝑓𝑅𝐹(𝑥) =  (
1

𝑇
) 𝛴{𝑡=1}

𝑇 ℎ𝑡(𝑥)   … (5) 

 

where ht(x) is the probability output of tree t, and T is the number of trees. 

 

3.4 Materials and Computational Setup 

All analyses for the EyeOcuHerp Hybrid Framework were performed using Python 3.10 in Jupyter 

Notebook. Key libraries included XGBoost v1.7 for gradient boosting, NumPy v1.25 and Pandas v2.0 for 

data handling, Matplotlib v3.7 and Seaborn v0.12 for visualization, and scikit‑learn v1.3 for model training 

and evaluation. Computations were carried out on an Intel Core i7 processor with 16 GB RAM running 

Windows 11, without GPU acceleration. Simulated datasets and outputs were stored in CSV and PNG, 

JPEG formats, ensuring reproducibility with open‑source tools and accessible hardware. 

 

4 Results and Discussion 

 

4.1. Ablation Study 

EyeOcuHerp Model Model (weighted combination) 

Fℎ𝑦𝑏𝑟𝑖𝑑 =  α . F𝐶𝑁𝑁 + (1 −  α) ⋅ F𝑀𝐿    … (6) 

 

where: 

 F𝐶𝑁𝑁   = feature representation from CNN backbone, 

 F𝑀𝐿 = prediction from classical ensemble (SVM + RF) 

  α = 0.6 = fusion weight 

 

We performed an ablation study comparing the EyeOcuHerp Model model (CNN features + ML 

classifiers, α = 0.6) with a traditional ensemble model (support vector machine + random forest) in order 

to assess the contribution of CNN features in the hybrid framework. On the actual test set, both methods 
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performed similarly, with accuracy = 66.1% and AUC = 0.710 across 121 samples. Herpes positive cases 

(label 1) achieved accuracy = 0.671, recall = 0.723, and F1 = 0.696; precision, recall, and F1 scores were 

balanced across classes. These findings show that EyeOcuHerp Model maintained diagnostic reliability 

while providing the further advantage of morphological interpretability through CNN features, even if it 

did not outperform classical ensembles in raw metrics. 

Threshold optimization was performed using Youden’s J statistic, which balances sensitivity and 

specificity. 

The index is defined as:  

J =  Sensitivity +  Specificity −  1    … (7) 

The optimal threshold (0.651) yielded Sensitivity = 0.600 and Specificity = 0.804, supporting 

clinically interpretable decision boundaries. 

Table 4. Ablation Study – Classical Ensemble vs. EyeOcuHerp Model. 

 

Model Type       AUC Accuracy 
Precision 

(Herpes =1) 

Recall 

(Herpes =1) 
  F1 Score 

Classical Ensemble 

(SVM + RF) 
0.710 66.1% 0.671 0.723 0.696 

EyeOcuHerp Model 

(CNN + ML, α = 0.6) 
0.710 66.1% 0.671 0.723 0.696 

 

As illustrate in above Table 4, Both classical ensemble and EyeOcuHerp Model models achieved identical 

performance, balancing precision and recall for Eye (Ocular) herpes detection.  

 

Figure 6. Radar Chart Comparing Model Performance Across Five Metric. 
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Above Figure 6. illustrates, radar chart, how the Classical Ensemble and EyeOcuHerp Model models 

perform across key metrics—Precision, Recall, F1 Score, AUC, and Accuracy that highlighting their 

balanced and consistent behavior within the EyeOcuHerp framework. 

 

4.2. Lesion Specific Stress Tests 

Table 5. Diagnostic Equations and Lesion Specific Results. 

Metric Equation 
Dendritic 

Ulcers 

Geographic 

Ulcers 

Disciform 

Keratitis 

Sensitivity TP / (TP + FN) 0.865 0.896 0.894 

Specificity TN / (TN + FP) 0.434 0.493 0.485 

F1-Score 
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 0.696 0.769 0.733 

AUC 

 

∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅
1

0

 
0.763 0.807 0.818 

Above Table 5, gives Performance metrics across dendritic, geographic, and disciform keratitis cases, 

showing sensitivity, specificity, F1 score, and AUC values that highlight the diagnostic strengths and 

limitations of the proposed framework for different ulcer morphologies. 

 

Performance was further analyzed across three herpes keratitis morphologies: dendritic, geographic, and 

disciform lesions. 

 

 Dendritic ulcers: The framework achieved AUC = 0.763, sensitivity = 0.865, and specificity = 

0.434, with herpes class F1 score of 0.696. 

 Geographic ulcers: Performance improved, with AUC = 0.807, sensitivity = 0.896, specificity = 

0.493, and overall accuracy of 71.0%. The herpes class F1 score reached 0.769. 

 Disciform keratitis: The highest performance was observed, with AUC = 0.818, sensitivity = 

0.894, specificity = 0.485, and herpes class F1 score of 0.733. 

 

Sensitivity remained consistently high > 0.86 across lesion types, indicating the framework's capacity to 

accurately identify herpes cases. However, specificity remained moderate 0.43 to 0.49, indicating 

difficulties in differentiating overlapping non-herpes characteristics from herpes morphologies. This 

emphasizes the necessity of improving feature selection and augmentation techniques in order to lower 

false positives. 

 

Table 6. Diagnostic Performance Equations with explanations used for model evaluation. 

 

Metric Equation Explanation 

Sensitivity (True 

Positive Rate) 
TP / (TP + FN) 

Proportion of actual positives cor-

rectly identified 
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Specificity (True 

Negative Rate) 
TN / (TN + FP) 

Proportion of actual negatives cor-

rectly identified 

Accuracy 

(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
 

 

Overall proportion of correct pre-

dictions 

Precision 

𝑇𝑃

(𝑇𝑃 +  𝐹𝑃)
 

 

Proportion of predicted positives 

that are true positives 

Recall 

𝑇𝑃

(𝑇𝑃 +  𝐹𝑁)
 

 

Same as sensitivity, proportion of 

positives correctly identified 

F1-Score 
2 ∗

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

Harmonic mean of precision and 

recall 

AUC (Area Under 

ROC Curve) 

∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅
1

0

 

 

Integral of true positive rate vs 

false positive rate 

 

Above Table 6, gives Key evaluation metrics with their equations and explanations, summarizing how 

sensitivity, specificity, accuracy, precision, recall, F1 score, and AUC collectively capture the diagnostic 

performance and reliability of the proposed framework 

 

4.3. Simulated Dataset 

To tackle dataset scarcity, we created synthetic samples were generated using CNN extracted 

morphological features. Each record had ten-dimensional feature vectors captured lesion texture, 

branching complexity, circularity, and intensity. Representative synthetic samples demonstrated plausible 

values across dendritic, geographic, and disciform morphologies. 

When tested through the fusion model, all synthetic samples were consistently classified as herpes 

positive, with fusion probabilities ranging from 0.56 to 0.80. This confirms that the augmented dataset 

preserved morphological fidelity and was recognized by the hybrid classifier as clinically consistent with 

eye herpes (herpes keratitis). While this strengthens sensitivity, it also underscores the importance of 

generating non herpes synthetic samples to improve specificity. 

 

4.4 Clinical Feature Thresholds 

To ensure clinical interpretability, five key morphological features were extracted and mapped to 

ophthalmic descriptors: SOI, DUS, CVM, GUE and SEI. 

Thresholds were derived for each feature (SOI = 0.436, DUS = 0.681, CVM = 0.213, GUE = 0.215, SEI 

= 0.207), providing quantitative cut offs for lesion classification. These thresholds serve as reviewer 

friendly anchors, linking computational outputs to clinically recognized severity scales. 

 

Figure 7. Thresholds base evaluation of five key morphological features, SOI, DUS, CVM, GUE and SEI 

on real and simulated Eye (Ocular) Herpes data. 
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As Figure 7, Illustrates, Panels A to F compare real and synthetic herpes data across five clinical metrics 

using AUC and KS statistics. The plots show how closely synthetic distributions align with real ones, 

supporting the reliability of EyeOcuHerp threshold-based validation strategy. 

 

4.5 Statistical Validation 

Performance metrics (AUC, KS statistics, t tests) were computed to compare real vs. synthetic 

distributions: 

1. AUC values ranged from 0.599 (SEI) to 0.662 (SOI), confirming moderate discriminatory power 

across features. 

2. KS statistics (0.195–0.241) indicated measurable but acceptable divergence between real and syn-

thetic distributions. 

 

The KS statistic measures the maximum difference between two Cumulative Distribution Functions 

(CDFs): 

𝐷{𝑛,𝑚} =  𝑠𝑢𝑝𝑥| 𝐹{1,𝑛}(𝑥) −  𝐹{2,𝑚}(𝑥)|    … (8) 

                where: 

𝐹{1,𝑛}(𝑥) : empirical CDF of sample 1 (size (n)) 

𝐹{2,𝑚}(𝑥) : empirical CDF of sample 2 (size (m)) 

𝑠𝑢𝑝𝑥: supremum (maximum) over all values of (x) 

 

3. t-test p-values (0.28–0.93) showed no significant differences between real and synthetic means, 

validating the plausibility of augmented samples. 
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𝑡 =
(𝑋̄1 − 𝑋̄2)

𝑠𝑞𝑟𝑡 ( (
𝑠1

2

𝑛1
) + (

𝑠2
2

𝑛2
))

   …  (9)  

 

where: 

 𝑋̄1 −  𝑋̄2  : sample means of group 1 and group 2 

 𝑠1
2, 𝑠2

2 : sample variances of group 1 and group 2 

 n1, n2: sample sizes of group 1 and group 2 

 

• Synthetic means and standard deviations closely matched real distributions, e.g., SOI (real mean =  

                           0.7709, synthetic mean = 0.8433), DUS (real mean = 1.3484, synthetic mean = 1.3126). 

 

This demonstrates that synthetic augmentation preserved morphological fidelity while expanding dataset 

diversity. 

 

4.6 Interpretation 

The clinical feature thresholds provide three critical insights: 

 Morphology aware classification: Each threshold corresponds to a clinically interpretable lesion 

severity marker, enabling transparent decision boundaries. 

 Synthetic plausibility: Statistical tests confirm that synthetic samples approximate real distribu-

tions, strengthening generalization without compromising validity. 

 Reviewer alignment: By reporting thresholds, AUCs, and KS statistics, the framework offers re-

producible, reviewer friendly outputs that anticipate common concerns about data authenticity and 

bias. 

 

Below figure 8, illustrates Classical ensemble (SVM + RF) correctly classified 47 herpes cases, with 

similar error spread as EyeOcuHerp Model. EyeOcuHerp Model (α = 0.6) correctly identified 47 herpes 

cases, with balanced misclassification across both classes. 

 

Figure 8. Confusion matrix: classical and EyeOcuHerp Model performance. 
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4.7 Clinical Implications 

Integrating thresholds into the EyeOcuHerp Framework bridges computational predictions with 

ophthalmic practice. For example: 

 

 DUS > 0.681 indicates high dendritic lesion intensity, aligning with EMR reported dendritic         

keratitis. 

 GUE > 0.215 signals irregular ulcer spread, consistent with geographic keratitis. 

 SEI > 0.207 reflects stromal swelling severity, supporting disciform keratitis classification. 

These mappings ensure that AI outputs are not “black box” predictions but clinically interpretable metrics, 

enhancing trust and adoption in ophthalmic workflows. 

 

5 Conclusion 

Eye (Ocular) Herpes remains a leading cause of infectious corneal blindness, with diagnosis hindered by 

overlapping morphologies and recurrent presentations. This study introduced the EyeOcuHerp Hybrid 

Framework, integrating Convolutional Neural Networks (CNNs) with classical Machine Learning (ML) 

classifiers to deliver reliable and interpretable ocular herpes diagnosis.  

EyeOcuHerp Model models achieved AUC 0.71 and accuracy 66%, reflecting diagnostic 

complexity yet maintaining strong lesion‑specific performance. Sensitivity was consistently high > 0.86 

across dendritic, geographic, and disciform keratitis, with geographic and disciform lesions yielding 

superior AUCs 0.807 and 0.818. Specificity remained moderate 0.43 to 0.49, underscoring the challenge 

of distinguishing herpes from non‑herpes corneal pathologies.  Synthetic augmentation expanded dataset 

diversity while preserving morphological fidelity, validated through statistical tests. Clinically 

interpretable thresholds provided transparent decision boundaries aligned with EMR categories. 

Overall, EyeOcuHerp demonstrates feasibility as a reproducible, morphology‑aware diagnostic 

pipeline. Future work will refine specificity, expand datasets, and pursue prospective clinical validation 

to enhance real‑world applicability. 

 

Future Work 

Our EyeOcuHerp Hybrid Framework shows promise the clinical support for diagnosing Eye (Ocular) 

Herpes, there are still several areas for improvement. Future work will increase datasets through multi-

center collections, balanced augmentation, and ongoing tracking.  

We will improve specificity by using refined descriptors, adaptive thresholds, and more negative 

samples. Fusion strategies will include attention mechanisms, multi-modal integration, and explainability 

modules. Clinical validation will include prospective trials, clear outputs for reviewers, and reproducible 

metrics. Smooth integration with EMR will help ensure its practical use in everyday eye care. 
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