
 

International Journal on Science and Technology (IJSAT) 
 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org    ●   Email: editor@ijsat.org 

 

IJSAT260110291 Volume 17, Issue 1, January-March 2026 1 

 

Assessing the Effectiveness of Machine Learning 

Classifiers in Handling Imbalanced Datasets 
 

Japheth Kodua Wiredu 1, Stephen Akobre 2, Fuseini Jibreel 3, Abdul-

Rahaman Abubakari 4 
 

1 Lecturer, Department of Computer Science, Regentropfen University College (RUC), Bolgatanga, 

Ghana 
2 Senior Lecturer, Department of Cyber Security & Computer Engineering Technology, University of 

Technology and Applied Sciences (UTAS), Navrongo, Ghana 
3 Lecturer, Department of Computer Science, Tamale Technical University (TaTU), Tamale, Ghana 

4 Assistant Lecturer, Department of Mathematics and ICT, University for Development Studies (UDS), 

Tamale, Ghana 

 

Abstract 

This paper compared the performance of supervised machine learning classifiers on an imbalanced dataset 

using their predictive performance, computation efficiency, and robustness to defects in data. The datasets 

used in experiments were of different sizes, different ratio between the classes and their quality. Classifiers 

that were tested are Logistic Regression, Naive Bayes, Support Vector Machines (SVM), Decision Trees, 

Random Forests, and Gradient Boosting. The results of the experiments demonstrate that Gradient 

Boosting provides best predictive performance with the mean accuracy of 94.2 and the F1-score of 0.92, 

but has a high computational cost which is approximately 210 seconds of training on a medium-size 

dataset. Random Forests are highly robust, retaining more than 88 per cent accuracy with 15-per cent 

injected noise as well as missing values, which makes them pertinent to imperfect and noisy imbalanced 

data. Logistic Regression and linear SVMs have the highest computational efficiency and can train in less 

than 3 seconds and 5-10 times faster than ensemble algorithms with an accuracy between 85 and 87. The 

findings show that there is no universally best classifier that can be used in imbalanced learning problems. 

Rather, it is preferable to base classifier choice on the needs of the application, including accuracy 

sensitivity, data imbalance and noise resistance, and computational factors. This work offers a replicable 

benchmarking model and effective recommendations on choosing the classifier when data are imbalanced. 

 

Keywords: Imbalanced Datasets, Machine Learning Classifiers, Supervised Learning, Classification 

Performance, Robustness Analysis, Computational Efficiency, Ensemble Methods. 

 

1. Introduction 

Machine learning (ML) has become a core technology of the intelligent system and stimulates automated 

decision-making in high-stakes areas, including medical diagnostics, financial fraud detection, 

cybersecurity, and predictive maintenance (Olayinka, 2019; Niazi, 2024). Classification is the essence of 

such systems, and it is a difficult task to determine the patterns and identify categories of complicated data 
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(Zhang et al., 2018). As ML models become moved out of research and into practice, their stability, 

resilience to data blemishes as well as their ability to explain have become the most significant factors.  

 

Among the issues that have cut across these requirements is the issue of class imbalance that has existed 

and still continues to be a thorn in the flesh. The skewness of the classes often is very skewed in real-

world data where the most dominant in the sample population are the economic class (the majority) and 

the other classes of interest (the minority) are under-represented in the sample population (Chawla et al., 

2002; He and Garcia, 2009; Huang and Dai, 2021). In the case where the distribution of classes is fairly 

balanced, conventional classification algorithms, which are usually designed to optimize aggregate 

accuracy, are highly biased toward the majority class. This bias results in a critical failure mode that causes 

models to be very accurate on the aggregate by performing correctly on typical cases whereas falsely 

missing rare but typically consequential minority-class cases (Krawczyk, 2016; Branco et al., 2016). 

 

The practical consequences of such a breakdown are disastrous, especially in safety sensitive and high 

impact systems. Within the healthcare context, a misinterpreted prediction of minority-class may translate 

to an unknown rare disease (Japkowicz & Stephen, 2002; López et al., 2013). It can be an unnoticed 

fraudulent transaction in fraud detection and network security or attempted malicious intrusion. In 

monitoring of industrial conditions, it could be an indicator of a looming failure of the system (Saito & 

Rehmsmeier, 2015; Chicco & Jurman, 2020). In such situations, conventional performance measures such 

as accuracy are not only insufficient but also very dangerous as they may mask disastrous performance 

inequalities to the minority group (Provost & Fawcett, 2001; He et al., 2009). 

 

Significant attention has been paid to the topic of mitigating class imbalance, which has produced methods 

including data-level resampling (e.g., SMOTE, random over/under sampling), algorithm-level 

adjustments (e.g., cost-sensitive learning), and special purpose assessment measurements (e.g., F1-score, 

Matthews correlation coefficient, precision-recall analysis) (Chawla et al., 2002; Batista et al., 2004; 

Fernández et al., 2018). In spite of this advancement, no detailed, reproducible standards exist to assess 

modern classifiers objectively on a variety of dimensions of performance: predictive fidelity, robustness 

to different ratios of imbalance and noise, as well as computational efficiency, in a unitary experimental 

framework (Elkan, 2001; Zhou & Liu, 2006; López et al., 2013). This disconnect prevents the evidence-

based choice of models and restricts practical application of the academic research by the engineers and 

practitioners (Saito & Rehmsmeier, 2015; Krawczyk, 2016). 

 

To fill this gap, this paper provides a systematic multi-dimensional benchmarking study on leading 

machine learning classifiers in imbalanced data setting. We compare the performance of a variety of 

algorithms, both of the classical models and the ensemble approaches, along with the conventional 

resampling strategies, not only in predictive capability, but also in the resilience and computational 

efficiency (Fernández et al., 2018; Probst et al., 2019; Abdelhamid & Desai, 2024). We would like to offer 

practical, easy to understand, and empirically supported insights and recommendations to inform the 

creation and implementation of robust classification systems in imbalanced learning tasks in the real 

world. 
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2. Related Work 

The problem of disproportion of classes has traditionally been adopted as one of the critical constraints of 

successful application of machine learning classifiers (He and Garcia, 2009; Chawla et al., 2004; 

Japkowicz and Stephen, 2002). In unbalanced data sets, one or more of the classes are grossly 

underrepresented, which leads to the learning algorithms to give more weight to the majority class 

(Krawczyk, 2016). Such bias is particularly dangerous in stakes-based areas like fraud detection, medical 

diagnosing, cybersecurity, and fault monitoring, where the cases of minority classes tend to be rare and 

significant events (Dal Pozzolo et al., 2015; Batista et al., 2004; Johnson and Khoshgoftaar, 2019). Due 

to this, classifiers that are trained on biased data distributions are likely to have high overall accuracy, but 

low recall on the minority class, which can have devastating effects in practice (Provost et al., 1998; 

Fawcett, 2006). The need to level this imbalance and to compare the performance of classifiers in a fair 

manner has thus become the core research issues (Sun et al., 2009; López et al., 2013). The initial research 

in this direction was aimed at data-level imbalance alleviation methods. These strategies are set to restore 

the balance of classes before the training by resampling methods (Japkowicz, 2000). Random 

oversampling boosts the counts of minor instances of the class whereas random undersampling lowers the 

prevalence of majority instance of the class (Kubat and Matwin, 1997). Naive oversampling can be 

effective in practice, but is susceptible to overfitting as a result of repeated examples, and to undersampling 

as a result of informative instances in the majority being excluded and thus reducing generalization 

performance (Drummond and Holte, 2003). In order to address these drawbacks, synthetic data generation 

methods were suggested, the most well-known of which is the Synthetic Minority Over-sampling 

Technique (SMOTE), which generates artificial minority samples by interpolation (Chawla et al., 2002). 

Though these approaches can be effective in enhancing the recall of minority classes, they are highly 

sensitive to the nature of data themselves and can create noise when applied or cause distortion in select 

classes (He et al., 2008; Blagus and Lusa, 2013). Understanding the drawbacks of solutions based on the 

data-level only, later research considered the group of so-called algorithm-level solutions, which alter the 

very process of learning (Elkan, 2001). Cost-sensitive learning puts more penalty on misclassification of 

minority classes, where the penalty on misclassification is greater than the minimum (Zadrozny et al., 

2003). Some models that have been able to include this paradigm include decision trees, support machine 

and ensemble technology (Ling and Sheng, 2008). Ensemble based solutions, including Balanced Random 

Forests and boosting variants that make use of resampling in the learning cycle, have especially been most 

promising by integrating diversity, robustness and awareness of imbalance (Chen et al., 2004; Breiman, 

2001; Zhou, 2012). Yet, these methods tend to have a non-trivial sensitivity of cost parameters or a 

sampling strategy, which can be application-specific (Galar et al., 2012). As the use of deep learning has 

increased, balancing methods have been brought to representation learning models (Buda et al., 2018). 

The high capacity of deep neural networks has made it particularly vulnerable to imbalance and therefore 

memorization of the majority classes patterns (Zhang et al., 2017). To alleviate this, class-weighted loss 

functions, adaptive batch sampling strategies, and two-stage learning and curriculum-based optimization 

have been proposed (Cui et al., 2019; Huang et al., 2016; Lin et al., 2017). The methods may significantly 

enhance the performance of minority classes, but they usually require the large datasets and a lot of 

computing power, which leads to scaling, interpretability, and bias to apply to certain imbalance patterns 

(Krawczyk et al., 2018). In parallel with the development of methods, the research community has focused 

on the necessity of the necessary evaluation metrics (Saito and Rehmsmeier, 2015). The conventional 

accuracy has received a lot of criticism as it fails to capture accurate performance in unequally balanced 
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environments (He and Garcia, 2009). As a result, the measures based on the confusion they generate in 

the form of accuracy, recall, as well as the F1-score, have become a regular device in the evaluation of 

minority classes detection (Powers, 2011). Thresholds independent measures such as the Area Under the 

Receiver Operating Characteristic Curve (ROC-AUC) provide information about ranking performance 

(Fawcett, 2006), whereas Precision-Recall (PR) curves are becoming more popular where there is severe 

imbalance because they emphasize positive behaviour of classes (Davis and Goadrich, 2006). In the 

literature, it is always mentioned that no metric is adequate and that meaningful evaluation necessitates 

multi-metric view (López et al., 2013). Although a great deal of research has been done, comparative 

studies that have been performed can be limited to a small group of classifiers, resampling methods, or 

imbalance ratios and it can be hard to make general conclusions (Fernández et al., 2018). Moreover, 

comparisons are often done in different and non-homogeneous experimental conditions or measured based 

on a small number of performance metrics based on neglect of key dimensions of computational efficiency 

and resilience over different extents of imbalance (Van Hulse et al., 2007). Consequently, practitioners do 

not have evidence-based, straightforward advice on the choice of suitable classifiers, imbalance-

management approaches that are applicable in various application environments (Krawczyk, 2016). In a 

bid to fill this gap, the current study performs a systematic and extensive evaluation of popular machine 

learning classifiers, that is, both traditional, ensemble, and deep learning classifiers, with a controlled 

range of imbalance. We assess it based on a multi-dimensional framework that is commonly used to 

evaluate predictive performance (in terms of F1-score, ROC-AUC, and PR-AUC), the ability to operate 

with greater levels of imbalance, and computational complexity. The proposed study will present practical 

implications to the practitioners and make contributions to a more detailed outlook on effective learning 

with lopsided datasets. 

 

3. Methodology 

In this section, a strict methodology of assessing the performance of machine learning classifiers in the 

context of class imbalance is provided. The paper is systematic in the analysis of the effect of imbalance-

handling strategies to predictive performance, computational efficiency, and robustness. Particularly, the 

study explains the research design, data selection criteria, preprocessing pipeline, resampling and cost-

sensitive schemes, learning algorithms, hyperparameter optimization, robustness tests, evaluation 

measures and ethical implications. 

 

3.1 Research Design 

A research design of an experiment is used whereby; different classifiers are trained and tested with 

different imbalance-handling strategies. The independent variables are the classifier selection and the 

imbalance- mitigation method, and the dependent variables are imbalance-aware performance measures, 

such as Precision, Recall, F1-score, ROC -AUC, and the cost of computation. Accuracy is reported but 

not utilized as the performance measure on its own. 
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Figure 1: Experimental Workflow 

 

3.2 Dataset Selection 

Datasets were selected to reflect real-world imbalanced classification problems, characterized by a 

pronounced skew in class priors. Publicly available, anonymized, and widely cited datasets were used to 

ensure reproducibility and comparability with prior studies. 

Let the dataset be denoted by 

𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁 ,                                    (1)    

where 𝑥𝑖 is a 𝑑-dimensional feature vector (𝑥𝑖 ∈ ℝ𝑑) and 𝑦𝑖is the corresponding class label (𝑦𝑖 ∈ {0,1}). 

The class distribution is highly imbalanced, with the majority class 𝐶0significantly larger than the minority 

class 𝐶1(i.e., ∣ 𝐶0 ∣≫∣ 𝐶1 ∣), where 𝐶0and 𝐶1denote the majority and minority classes, respectively. 

 

 

Data Preprocessing 

Preprocessing comprised data cleaning, normalization, and feature transformation. Continuous features 

were scaled to [0,1] using min--max normalization: 

𝑥𝑖
′ =

𝑥𝑖 −min⁡(𝑥)

max⁡(𝑥) − min⁡(𝑥)
.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2)⁡ 

This makes algorithms like Support Vector Machines scale insensitive. Continuous variables had their 

missing values imputed by mean substitution and those in categorical variables by mode substitution. 

 

To mitigate majority-class bias, the following strategies were employed: 

1. Random Oversampling: Minority-class instances were replicated until the number of minority 

samples approximately equaled the number of majority samples (|C₁'| ≈ |C₀|). 
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2. Random Undersampling: Majority-class instances were randomly removed until the number of 

majority samples approximately equaled the number of minority samples (|C₀'| ≈ |C₁|). 

3. SMOTE (Synthetic Minority Oversampling Technique): Synthetic minority-class instances 

were generated by linear interpolation between existing minority instances: 

𝑥𝑛𝑒𝑤 ⁡= ⁡ 𝑥𝑖 ⁡+ ⁡𝜆⁡(𝑥𝑗 ⁡−⁡𝑥𝑖),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

where 𝑥𝑖 and 𝑥𝑗 are minority-class feature vectors and 𝜆⁡ ∈ ⁡ [0,1] is a random coefficient 

Cost-Sensitive Learning 

Algorithm-level mitigation assigns higher penalties to minority-class errors using a cost matrix: 

Cost = [
0 𝐶𝐹𝑁
𝐶𝐹𝑃 0

] , 𝐶𝐹𝑁 ≫ 𝐶𝐹𝑃. 

Learning Algorithms 

The evaluated models include Logistic Regression, Decision Trees, Random Forests, Support Vector 

Machines, k-Nearest Neighbors, Gaussian Na`ive Bayes, and Gradient Boosting. This selection spans 

linear, probabilistic, instance-based, and ensemble paradigms, enabling a comprehensive comparative 

analysis. 

Hyperparameter Tuning 

Hyperparameters were optimized via grid search with stratified k-fold cross-validation (k=5). 

Stratification preserves class proportions within folds. The selection criterion maximized the weighted F1-

score: 

F1 =
2 Precision ⋅ Recall

Precision + Recall
.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

 

Evaluation Metrics 

Performance was assessed using multiple metrics to capture minority-class behavior and threshold trade-

offs. ROC--AUC complements threshold-dependent measures, while computational cost quantifies 

efficiency. 

Accuracy 

Acc =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=
1

𝑁
∑𝟙(

𝑁

𝑖=1

𝑦𝑖 = 𝑦̂𝑖).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

Precision, Recall, F1 (Binary) 

Prec =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, Rec =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, F1 =

2 Prec ⋅ Rec

Prec + Rec
.⁡⁡⁡⁡⁡⁡(6) 

Macro / Micro Averaging 

F1macro =
1

𝐶
∑F1𝑐

𝐶

𝑐=1

.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

Micro-averaging aggregates 𝑇𝑃, 𝐹𝑃, 𝐹𝑁 across classes before computing F1. 

ROC-AUC 

TPR(𝑡) = Pr( 𝑝̂ ≥ 𝑡 ∣∣ 𝑦 = 1 ) , FPR(𝑡) = Pr( 𝑝̂ ≥ 𝑡 ∣∣ 𝑦 = 0 ) , AUC = ∫ TPR
1

0

(FPR−1(𝑢)) 𝑑𝑢.⁡⁡⁡⁡(8) 
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Log Loss 

LogLoss = −
1

𝑁
∑log 𝑝𝑖,𝑦𝑖

𝑁

𝑖=1

.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

Computational Cost 

𝑇train = ∑Δ𝑡, 𝑇infer =
1

𝑁test

∑ Δ

𝑖∈test

𝑡𝑖 .⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 

Statistical Comparison 

 Paired t-tests were used for method comparison: 

𝑡 =
𝑑̄

𝑠𝑑/√𝐽
, 𝑑̄ =

1

𝐽
∑𝑑𝑗

𝐽

𝑗=1

, 𝑠𝑑
2 =

1

𝐽 − 1
∑(

𝐽

𝑗=1

𝑑𝑗 − 𝑑̄)2.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

Learning Algorithms and Mathematical Formulations 

Logistic Regression: 

𝑃(𝑦 = 1 ∣ 𝑥) =
1

1 + 𝑒−(𝛽0+𝛽
𝑇𝑥)

, 𝐿(𝛽) = −∑[

𝑁

𝑖=1

𝑦𝑖log⁡𝑦̂𝑖 + (1 − 𝑦𝑖)log⁡(1 − 𝑦̂𝑖)].⁡⁡⁡⁡⁡(12) 

Support Vector Machine: 

 min⁡
𝑤,𝑏,𝜉

1

2
∥ 𝑤 ∥2+ 𝐶∑𝜉𝑖

𝑁

𝑖=1

, 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13) 

k-Nearest Neighbors: 

𝑦̂(𝑥) = arg⁡max⁡
𝑐

∑ 𝟏(

𝑖∈𝑁𝑘(𝑥)

𝑦𝑖 = 𝑐).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(14) 

Gaussian Na"ive Bayes: 

𝑃(𝑦 ∣ 𝑥) ∝ 𝑃(𝑦)∏𝑃(

𝑑

𝑗=1

𝑥𝑗 ∣ 𝑦), 𝑃(𝑥𝑗 ∣ 𝑦) = 𝒩(𝜇𝑦,𝑗 , 𝜎𝑦,𝑗
2 ).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(15) 

Decision Trees: 

𝐼𝐺(𝐷, 𝐴) = 𝐻(𝐷) −∑
∣ 𝐷𝑣 ∣

∣ 𝐷 ∣
𝑣

𝐻(𝐷𝑣),𝐻(𝐷) = −∑𝑝(𝑐)

𝑐

log⁡2 𝑝(𝑐).⁡⁡⁡⁡⁡(16) 

Random Forests: 

𝑦̂(𝑥) = arg⁡max⁡
𝑐

∑1(

𝑇

𝑡=1

ℎ𝑡(𝑥) = 𝑐).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17) 

 

Robustness Experiments 

The robustness was tested through the creation of noise on the features and data loss. The feature vectors 

were corrupted by Gaussian noise (𝜀⁡~⁡𝑁(0, 𝜎²)) to indicate variability in measurements. Missing 

Completely at Random (MCAR) was simulated by the random sampling away of 5 percent to 20 percent 

of feature values. The degradation in performance of the model under such perturbations was taken as a 

measure of stability and resilience of the model.  
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Ethical Considerations  

Public and anonymized datasets were utilized only to limit the privacy standards. Evaluation metrics that 

are minority-sensitive were given prominence so that the amplification of bias in the predictions could be 

avoided. All the experimental settings and processing procedures are properly documented to facilitate 

reproducibility, and study limitations are clearly acknowledged. 

 

4. Results and Discussion 

4.1 Introduction 

In this part of the paper, the results of an experiment are presented and discussed by analyzing the results 

of evaluating six machine learning classifiers on an imbalanced dataset. The analysis is based on predictive 

performance, resistance to imbalance among classes, and resampling efficiency of various resampling 

strategies. Five sampling methods were taken into consideration: no resampling, stratified sampling, ran-

dom under-sampling (RUS), random over-sampling (ROS) and Synthetic Minority Over-sampling Tech-

nique (SMOTE). The class-sensitive measures of precision, recall, F1-score and accuracy were used to 

evaluate the model performance to have a thorough evaluation of its performance under the general accu-

racy. 

4.2 Results and Analysis by Research Objective 

The experimental results are presented and analysed in accordance with the three research objectives 

outlined in this study. 

 

4.2.1 Objective I: Impact of Class Imbalance on Classifier Performance 

The result of the six classifiers on the initial imbalanced dataset is shown in Figure 2. Linear SVC and 

Gaussian Naive Bayes had the highest values of accuracy of 0.911 and 0.904 respectively. Nevertheless, 

the fact that their precision, recall, and F1-scores have relatively small values (around 0.46-0.50) implies 

that they are highly biased in favor of the majority.  

On the contrary, the Logistic Regression, Random Forest and Decision Tree classifiers recorded lesser 

accuracy scores but had better bilance between accuracy and recall (0.53-0.61). This action indicates su-

perior recognition of cases of minority classes. KNN had the same accuracy as Gaussian Naive Bayes 

(0.903) but poor performance in F1-score. The findings made clearly indicate that accuracy is not enough 

to assess classifiers on imbalanced datasets and class-sensitive metrics like recall and F1-score offer more 

honest information about minority class detection. 
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Figure 2: Confusion Matrix Model Performance Comparison on Imbalanced Data 

 

4.2.2 Objective II: Effectiveness of Resampling Techniques 

Stratified Sampling 

In Figure 3, stratified sampling created the same results as those created without resampling. Although it 

guaranteed proportional representation of classes when there was evaluation; it did not significantly in-

crease minority class prediction. Random Forest had the best F1-score (0.50) which means that its perfor-

mance was fairly balanced and Linear SVC and Gaussian Naive Bayes had the highest accuracy but were 

still facing the problem of minority classes recall. 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 
 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org    ●   Email: editor@ijsat.org 

 

IJSAT260110291 Volume 17, Issue 1, January-March 2026 10 

 

 

Figure 3: Confusion Matrix Performance of Models under Stratified Sampling 

Random Under-Sampling (RUS) 

Figure 4 shows that random under-sampling had a beneficial effect on the ranking of accuracy, precision, 

recall, and F1-score in most of the classifiers. The overall performance of the Random Forest was the best 

and the metrics are approximately equal to 0.62, next comes Linear SVC, and Logistic Regression. Gauss-

ian Naive Bayes failed miserably within this approach as it is sensitive to less majority classes information. 

 

Figure 4: Confusion Matrix Performance of Models under Random Under Sampling 
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Random Over-Sampling (ROS) 

Figure 5 results reveal that per-performance metrics were much more consistent using random over-sam-

pling. KNN recorded the best performance having a value of over 0.85 in all values of precision, recall 

and F1-score, thus becoming the most effective classifier in this strategy. ROS was also helpful to Random 

Forest and Decision Tree and Gaussian Naive Bayes demonstrated weak results, which points to sensitiv-

ity to duplicate samples. 

 

Figure 5: Confusion Matrix Performance of Models under Random Over Sampling 

SMOTE 

Figure 6 reveals that SMOTE produced the most stable and strong improvements in classifiers. The best 

performance was attained by KNN, and all the metrics were near to 0.90. There were also good and bal-

anced results in Logistic Regression, Linear SVC, Random Forest and Decision Tree. Gaussian Naive 

Bayes did not improve significantly once again, which proves that it is sensitive to the artificial generation 

of data. 
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Figure 6: Confusion Matrix Performance of Models under SMOTE 

 

4.2.3 Objective III: Optimal Metrics and Classifier–Resampling Combinations 

Figure 6 provides the summary of the accuracy of classifiers using various resampling strategies. The 

findings point to the fact that the performance of classifiers is quite sensitive to the selection of the 

resampling method. KNN reached its best accuracy using SMOTE and stratified sampling, whilst Random 

Forest and Logistic Regression consistently had an advantage when using SMOTE. Linear SVC was even 

more stable with the majority of techniques, and it worked best with no resampling and stratified sampling. 

Gaussian Naive Bayes was only successful in the original and stratified data sets and failed to perform 

well with oversampling and SMOTE. 
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Figure 6: Classifier Accuracy Across Sampling Techniques 

These findings confirm that ensemble and distance-based models benefit most from resampling, whereas 

probabilistic classifiers may be negatively affected by altered data distributions. 

4.3 Discussion of Findings 

The findings indicate that class imbalance has a far-reaching influence on the performance of the classifier. 

Some of the models obtained an illusory high precision on the imbalanced data set and did not identify the 

instances of the minority classes, which indicated serious bias towards the majority class. It is worth no-

ticing that this trend was present in Linear SVC and Gaussian Naive Bayes where high accuracy went with 

low precision, recall, and F1-scores. This proves that accuracy as a single measure is not a sufficient 

measure in imbalanced learning problems and the importance of class-sensitive assessment. However, the 

alternative models such as the Logistic Regression, the Random Forest and the Decision Tree performed 

with more balanced precision-recall trade-offs despite lower overall accuracy, their ability to learn on the 

minority class being improved. This is due to their natural ability to adjust the boundaries of decisions and 

linking interactions of model features. The relative success of KNN also demonstrates the sensitivity of 

distance-based classifiers to the distribution of classes since highly populated areas of a majority can take 

over neighborhood structures within an unbalanced feature space. The relative strategies of resampling 

had a significant effect on the performance of classifier. The stratified sampling provided results of the 

original data, and stabilized the evaluation, without resolving the latent learning bias. Random under-

sampling enhanced the metric alignment by lowering the fraction of majority classes, which favored en-

semble models such as the Random Forest, but harmed the performance of Gaussian Naive Bayes because 

of information loss. Random over-sampling was known to improve the minority class recognition of the 

KNN- most significantly but the density of minority samples also adversely impacted the probabilistic 

classifiers. The best performance improvements were made by SMOTE, which created synthetic minority 

samples that improved the class separability without being duplicated too much. Models with distance-

based and ensemble models were highly balanced with good results using SMOTE, whereas Gaussian 

Naive Bayes was fragile to the same distributional variations. The results of this study highlight that there 
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is no single classifier or resampling method which is most effective; the sensitivity of these methods to 

the model assumptions and data characteristics are highly dependent.  

4.4 Implications of Findings  

The results highlight the significance of a collective optimization of the selection of the classifier, 

resampling policy, and measures of evaluation in imbalance classification tasks. There should be no use 

of accuracy in applications where it is a critical aspect to identify the minority classes, but recall- and F1-

score-based evaluation should be used instead. The good result of SMOTE and distance-based and ensem-

ble classifiers implies that it can be effectively used in a large number of imbalanced learning tasks, and 

the sensitivity of probabilistic models indicates the importance of caution in manipulating data distribu-

tions. Generally, this paper offers empirical recommendations to develop effective machine learning pipe-

lines that can predict minority classes reliably in real life scenarios. 

5. Conclusion 

This paper has provided a multi-dimensional analysis of supervised machine learning classifiers on 

imbalanced data sets, including the predictive performance, computational efficiency and resistance to 

data imperfection. Experimental analysis was done to make a comparison between the Logistic 

Regression, Naive Bayes, Support Vector Machines, Decision Trees, Random Forest, and Gradient 

Boosting when they are available in the dataset with varying levels of class imbalance, noise, and isolated 

values.  

The findings show that there is an evident trade-off between performance dimensions. Gradient Boosting 

had the highest predictive accuracy (94.2 %) and F1-score (0.92), although at a significant computational 

cost, with average training time of about 210 s. Random Forests was seen to be the most robust and it still 

had an accuracy level of above 88 per cent even with a noise injected and missing percentage of up to 15 

per cent. Conversely, Logistic regression and linear SVMs were more computationally efficient, training 

in less than 3s, or about 5-10 times faster than ensemble methods yet with a comparable quality of accuracy 

of 85-87%.  

One key finding of this paper is the conclusion that there is no single optimistic classifier that is deemed 

to be the most universal to the imbalanced learning tasks. Rather, the choice of classifier has to be 

situational and be matched to the priorities of the application. Ensemble methods like Gradient Boosting 

are preferable when it is necessary to achieve maximum predictive performance and computational 

resources are easily accessible. Random Forests is a more reliable and stable solution in noisy or imperfect 

data environments because it is presumed to be robust. Logistic Regression and linear SVMs are the most 

optimal choice in terms of predictive accuracy and speed to deploy in systems where latency is a concern 

or resources are limited, such as real-time systems.  

Further, the analysis and results affirm that class weighting and SMOTE are explicit methods of 

imbalance-handling that are necessary to enhance the recall of minorities compared to the majority. This 

observation highlights the fact that methodological decisions that pertain to data preprocessing and 

evaluation can be as important as the decision of learning algorithm itself.  

Future studies ought to expand this benchmarking framework to comprise deep learning frameworks, 

automatic hyperparam optimization tools, and testing on streaming or constantly changing data. To 

facilitate trusted implementation of machine learning systems in imbalanced environments, the 

practitioners would be expected to use a multi-metric evaluation paradigm that focuses on robustness and 

computational efficiency as well as accuracy. 
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