

Kaya Karpam Interventions for Reproductive Health: A Systematic Review of Siddha Medicine's Approach to Infertility

S.Eunice Golda¹ ,S.M. Thejal Thara²,Dr.A.M.Janani³

^{1,2} Undergraduate BSMS third professional, Nandha siddha medical college, Hospital, Erode.

³Guide, Assistant Professor, Department of Gunapadam- Marunthakkaviyal, Nandha siddha medical college, hospital, erode-52

Abstract

Infertility is a rising global concern linked to environmental toxins, delayed parenthood, and oxidative stress. While modern interventions focus on hormonal manipulation, the Siddha system provides a holistic rejuvenative framework known as **Kaya Karpam**. This review evaluates the role of thirty specific Kaya Karpam interventions in managing both male and female infertility. By targeting the Seven Thathu (vital tissues) and modulating the endocrine system through bioactive phytochemicals, these interventions offer a multi-dimensional approach to reproductive health. This paper synthesizes traditional Siddha wisdom with modern pharmacological insights to provide a roadmap for integrative fertility care.

Keywords

Infertility, Kayakarpam, phytochemical profiles, Reproductive health, Siddha medicine

1. Introduction

Clinical infertility is typically identified when a couple is unable to achieve pregnancy despite twelve months of consistent, unprotected intercourse [1]. While contemporary obstacles ranging from chronic psychological stress and nutritional deficiencies to environmental pollutants and the trend of delayed parenthood—are significant contributors [2], the approach to treatment varies between systems. Modern protocols frequently prioritize Assisted Reproductive Technology (ART) and hormonal interventions [1]. Conversely, the Siddha system of medicine focuses on systemic rejuvenation and addressing the physiological root causes of reproductive failure [3, 4].

According to Siddha tenets, physical well-being is predicated on the equilibrium of the three physiological humors: **Vazhi**, **Azhal**, and **Iyyam**. The condition of infertility, referred to as **Maladu**, is viewed as a consequence of the impairment either[5] in volume or potency of the vital reproductive fluids, **Vindhu** (male) and **Natham** (female).[6] Such disharmony typically results in the defective maturation or unsuccessful nidatory stability of the **Sukila-Suronitham** (the embryonic unit).[7]

In contrast to the emphasis placed on **Assisted Reproductive Technology (ART)** and **Hormone Replacement Therapy (HRT)** in Western clinical settings, the Siddha system proposes **Kaya Karpam** (literally "body fortification") as a dual-action preventive and therapeutic model. This discipline utilizes specialized Karpam pharmacotherapy and **Pranayama** (yogic breathing)[11] to retard cellular senescence and optimize the functional integrity of the **Seven Thathus** (primary tissues)[8][9]. A central objective of this approach is the refinement of **Sukilam** (the reproductive tissue), the final product of metabolic transformation. This study examines the efficacy of these rejuvenative protocols in managing complex etiologies, including **Polycystic Ovary Syndrome (PCOS)**[10], inflammatory disorders of the uterus, and male factor infertility such as **oligospermia**.

Phytochemical Review of Kaya Karpam Interventions

S.No	Siddha / Common Name	Botanical Name	Major Phytochemicals	Role in Infertility Management
1	Kaddukai	Terminalia chebula	Chebulagic acid, Gallic acid	Detoxifier; ensures proper nutrient absorption for Dhathu formation.[17]
2	Orithal Thamarai	Hybanthus enneaspermus	Flavonoids, Alkaloids	Increases sperm count; cooling agent for the uterine environment.[17,18,19]
3	Pon Seenthil	Tinospora cordifolia	Tinosporin, Berberine	Immunomodulator; protects germ cells from oxidative stress. [13,20,21]
4	Karuvembu	Murraya koenigii	Mahanimbine, Girinimbine	Blood purifier; treats pelvic inflammatory conditions.[17,22,23]
5	Karisalai	Eclipta alba	Wedelolactone, Flavonoids	Hepatoprotective; aids in steroid hormone metabolism.[17,24,25]
6	Sivanar Vembu	Indigofera aspalathoides	Phenols, Flavonoids	Anti-inflammatory; useful in Tubal blocks/PID.[17,26,27]
7	Keezhanelli	Phyllanthus niruri	Phyllanthin, Lignans	Regulates FSH/LH levels via liver enzyme optimization.[17,28,29]
8	Sengkodivel	Plumbago indica	Plumbagin	Stimulates Deepana (digestion); treats anovulatory cycles[30,31]
9	Neermulli	Hygrophila auriculata	Alkaloids, Sterols	significantly improves sperm motility.[32,33]

S.No	Siddha / Common Name	Botanical Name	Major Phytochemicals	Role in Infertility Management
10	Vellai Erukku	<i>Calotropis gigantea</i>	Calotropin, Glycosides	Clears Kapha-related blocks in reproductive tracts.[34,35]
11	Karunthulasi	<i>Ocimum sanctum</i>	Eugenol, Ursolic acid	Adaptogen; reduces cortisol-induced reproductive failure.[36,37]
12	Senkaranthai	<i>Sphaeranthus indicus</i>	Sesquiterpenes	Ovarian tonic; regulates the menstrual cycle.[38,39]
13	Sotrukattralai	<i>Aloe barbadensis</i>	Aloin, Polysaccharides	Corrects PCOS; promotes follicular maturation.[40,41]
14	Amukkara	<i>Withania somnifera</i>	Withanolides	enhances HPO axis function.[42]
15	Urulai	<i>Solanum tuberosum</i>	Vitamin B6, Starch	Nutritive support for endometrial lining development.[43]
16	Puliyarai	<i>Oxalis corniculata</i>	Vitexin, Tannins	Neutralizes excessive Pitham (heat) affecting sperm viability.[44,45,46]
17	Koraikizhangu	<i>Cyperus rotundus</i>	Cyperene, Flavonoids	Relieves uterine congestion; manages PCOS.[47,48]
18	Vendhayam	<i>Trigonella foenum-graecum</i>	Diosgenin, Saponins	Phytoestrogenic; supports ovulation in estrogen-deficient cases.[49,50]
19	Thamarai (Pollens)	<i>Nelumbo nucifera</i>	Quercetin, Kaempferol	Hemostatic; prevents early pregnancy loss/spotting.[51,52]
20	Brahmathandu(pollen)	<i>Argemone mexicana</i>	Protopine, Berberine	cleanses the reproductive fluids.[53,54]
21	Moongil (Root)	<i>Bambusa arundinacea</i>	Silicates, Amino acids	Strengthens the structural integrity of the uterus.[55,56]
22	Naval(root)	<i>Syzygium cumini</i>	Jamboline, Tannins	Manages insulin-resistance-linked infertility (Diabetic PCOS).[16]

S.No	Siddha / Common Name	Botanical Name	Major Phytochemicals	Role in Infertility Management
23	Karuvelam(root)	Acacia nilotica	Polyphenols	Astringent; strengthens the cervix and supports implantation.[57,58]
24	Panai Vellam	Borassus flabellifer	Iron, B-vitamins	Combats anemia, a leading cause of amenorrhea.[59]
25	60	Bos indicus	CLA, Butyric acid	Bio-enhancer; nourishes the oocyte.[60]
26	Maangkottai	Mangifera indica	Mangiferin, Fatty acids	Uterine tonic; reduces leucorrhea.[61]
27	Murungai vidhai	Moringa oleifera	Quercetin, Vitamin C	High antioxidant load; reverses DNA fragmentation in sperm.[62]
28	Munthiri	Anacardium occidentale	Zinc, Healthy fats	Essential for testosterone synthesis and oocyte quality.[63]

2. Results and Discussion

The therapeutic efficacy of **Kaya Karpam** in treating infertility is not derived from isolated pharmacological action but through a synergistic "Bio-Psycho-Physical" triad. At the structural level, yogic interventions—specifically Sarvangasana and Badha Konasana—function as mechanical catalysts that enhance pelvic microcirculation[64] and modulate thyroid-ovarian axis feedback. This physical foundation is further stabilized by **Pranayamam** (respiratory regulation), which shifts the nervous system from a sympathetic "fight or flight" state to a parasympathetic "rest and digest" state[65]. By mitigating chronic sympathetic dominance, these practices effectively lower systemic cortisol—a known antagonist of the **Gonadotropin-Releasing Hormone (GnRH)** pulse—thereby restoring the rhythmic hormonal signaling essential for ovulation and spermatogenesis.

The pharmacological analysis identifies three primary pathways of action. First, a robust **antioxidant defense** is established by phytochemicals like **withanolides** and **quercetin**, which scavenge Reactive Oxygen Species (ROS) to safeguard gamete DNA integrity. Second, **metabolic modulation** is achieved through insulin-sensitizing agents like Aloe vera, which rectify the hyperinsulinemia-driven androgen excess typical of PCOS. Third, the utilization of **Pasu Nei (Ghee)** as a lipophilic carrier ensures that these bioactive compounds bypass first-pass metabolism and achieve high bio-availability within the gonadal tissues.

Furthermore, the clinical success of this regimen is strictly predicated on **Pathyam**[66] (disciplined lifestyle). The avoidance of "Pitham-inducing" stimulants—such as tobacco, alcohol, and excessive heat—is critical to preventing thermal degradation of the Sukira Dhathu. Similarly, the regulation of **Apana Vayu** (the downward-moving vital force) through the avoidance of daytime sleep and the suppression of

natural urges ensures that the reproductive "field" remains energetically and physiologically receptive to conception.

3. Conclusion

Siddha KayaKarpam offers a robust, evidence-based alternative for infertility management. By combining metabolic correction, detoxification, Yoga, and Pranayamam, it addresses the root cause of reproductive failure. To achieve success, the patient must adhere to the Pathyam(prescribed habits) to allow the Karpam medicines to fortify the body effectively.

4. Acknowledgement

We are deeply thankful for our principal mam and faculties of Nandha Siddha Medical College and Hospital, Erode, for providing the academic support and resources necessary to carry out this study.

Reference

1. **Zegers-Hochschild, F., et al.** (2017). The International Glossary on Infertility and Fertility Care. *Human Reproduction*, 32(9), 1786–1801.
2. **Sharma, R., et al.** (2013). Lifestyle factors and reproductive health: taking control of your fertility. *Reproductive Biology and Endocrinology*, 11(1), 66.
3. **Santhosh, B., et al.** (2021). Concept of Male Infertility in Siddha System of Medicine: A Review. *International Journal of Research in Pharmaceutical Sciences*.
4. **Kanakavalli, K., et al.** (2017). Kaya Kalpa: The Rejuvenative Therapy of Siddha Medicine. Central Council for Research in Siddha (CCRS)
5. **Thas, J. J. (2008)**. Siddha Medicine: Background and Principles and the Application for Skin Diseases. *Clinics in Dermatology*, 26(1), 62-78.
6. **Sathyarajeswaran, P., et al. (2021)**. Review of Infertility Management in Siddha System of Medicine. *International Journal of Siddha Medicine*.
7. **Aravind, G., et al. (2014)**. Scientific Aspect of Siddha Principles in Embryology. *International Journal of Herbal Medicine*, 2(2), 112-117.
8. **Anbarasi, C., et al. (2015)**. Kaya Kalpa Therapy in Siddha System of Medicine: A Review. *International Journal of Recent Scientific Research*.
9. **Uthamarayan, K. S. (2005)**. Siddhar Thathuvam (Siddha Philosophy). Government of Tamil Nadu Publication.
10. **Manickavasakam, K., et al. (2010)**. Siddha Management of Male Infertility – A Case Study. *Journal of Research in Ayurveda and Siddha*.
11. **Sengupta, P. (2012)**. Challenge of Infertility: How Yoga Can Help? *International Journal of Yoga*.
12. **K.M. Nadkarni (1954)**. *Indian Materia Medica*. Popular Prakashan.
13. **Prajapati, N.D., et al. (2003)**. *A Handbook of Medicinal Plants: A Complete Source Book*. Section on *Tinospora cordifolia* and *Withania somnifera*.
14. **Sengupta, P., et al. (2018)**. Phytotherapy in Male Infertility: Which Is the Way Forward? *Reproductive BioMedicine Online*.

15. **Ganesan, K., et al. (2017).** Ethnomedical Survey of Plants Used for Gynaecological Disorders. *Journal of Ethnopharmacology*.
16. **Velmurugan, C., et al. (2010).** Antidiabetic and Hypolipidemic Activity of *Syzygium cumini* (Naval). *International Journal of PharmTech Research*.
17. **Murugesu Mudaliar, K. S. (1988).** *Siddha Materia Medica* (Vegetable Section). 4th ed. Chennai: Tamil Nadu Siddha Medical Council
18. **Hussain, N., & Ravichandran, N. (2012).** Evaluation of the phytochemical and pharmacological properties of *Hybanthus enneaspermus*: A Review. *International Journal of Pharmaceutical Sciences and Research*.
19. **Sahoo, H. B., et al. (2012).** Aphrodisiac activity of *Hybanthus enneaspermus* (L.) F. Muell. in rats. *Journ*
20. **Saha, S., & Ghosh, S. (2012).** *Tinospora cordifolia*: One plant, many roles. *Ancient Science of Life*, 31(4), 151–159.al of *Ethnopharmacology*, 141(1), 514–518.
21. **Sharma, P., et al. (2019).** *Tinospora cordifolia*: A review of its ethnomedicinal uses, phytochemistry, and pharmacology. *World Journal of Pharmaceutical Research*.
22. **Jagatheeswari, D. (2013).** Review on *Murraya koenigii*. *International Journal of Research in Pharmaceutical and Biosciences*.
23. **Nalli, Y., et al. (2016).** Carbazole alkaloids from *Murraya koenigii*: Antiphlogistic and anti-inflammatory activities. *Phytochemistry Letters*.
24. **Prabu, K., et al. (2011).** Hepatoprotective activity of *Eclipta alba*. *International Journal of PharmTech Research*.
25. **Wagner, H., et al. (1986).** The coumestans of *Eclipta alba*. *Phytochemistry*.
26. **Gnanasekaran, D., et al. (2015).** In vitro antimicrobial activity of *Indigofera aspalathoides*. *International Journal of Pharmacy and Pharmaceutical Sciences*.
27. **Saraswathy, A., et al. (1998).** Phenolic constituents from *Indigofera aspalathoides*. *Indian Journal of Chemistry*.
28. **Bhosale, U. A., et al. (2013).** Hepatoprotective and antioxidant activity of *Phyllanthus niruri*. *Journal of Applied Pharmaceutical Science*.
29. **Murugaiyah, V., & Chan, K. L. (2009).** Mechanisms of antihyperuricemic effect of *Phyllanthus niruri* and its lignan constituents. *Journal of Ethnopharmacology*.
30. **Cherian, S., et al. (2014).** Evaluation of the antifertility and abortifacient activity of *Plumbago rosea*. *Journal of Phytopharmacology*.
31. **Sreeja, S., et al. (2022).** Scientific Review on the Role of Siddha Medicine in the Management of Polycystic Ovarian Syndrome. *International Journal of Current Research in Biology and Medicine*.
32. **Chauhan, N. S., et al. (2011).** A review on plants used for improvement of sexual performance and virility. *BioMed Research International*.
33. **Boar, R. B., et al. (1970).** Phytochemicals of *Hygrophila auriculata*. *Phytochemistry*.
34. **Kumar, G., et al. (2013).** Pharmacological activities of *Calotropis gigantea*: An overview. *Journal of Applied Pharmaceutical Science*.
35. **Pattnaik, P. K., et al. (2017).** Phytochemistry and therapeutic potential of *Calotropis gigantea* L. (Asclepiadaceae). *Journal of Ethnopharmacology*.
36. **Bhattacharyya, D., et al. (2008).** Controlled programmed trial of *Ocimum sanctum* leaf on generalized anxiety disorders. *Nepal Medical College Journal*.

37. **Pattanayak, P., et al.** (2010). Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. *Pharmacognosy Reviews*.
38. **Ramachandran, S., et al.** (2011). Investigation of Antidiabetic, Antihyperlipidemic, and In Vivo Antioxidant Properties of Sphaeranthus indicus Linn. in Type 1 Diabetic Rats. *Evidence-Based Complementary and Alternative Medicine*.
39. **Galani, V. J., & Patel, B. G.** (2010). *Sphaeranthus indicus Linn.*: A phytopharmacological review. *International Journal of Ayurveda Research*.
40. **Maharjan, A., et al.** (2010). Antifertility effect of Aloe barbadensis Miller in female mice. *Journal of Ethnopharmacology*.
41. **Radha, M. H., & Laxmipriya, N. P.** (2015). Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. *Journal of Traditional and Complementary Medicine*.
42. **Ahmad, M. K., et al.** (2010). *Withania somnifera* improves semen quality by regulating reproductive hormone levels and oxidative stress in seminal plasma of infertile males. *Fertility and Sterility*.
43. **Unfer, V., et al.** (2015). The Role of B-Vitamins in Female Fertility. *Reproductive Biology and Endocrinology*.
44. **Sakat, S. S., et al.** (2010). Antioxidant and anti-inflammatory activity of *Oxalis corniculata*. *International Journal of Pharma and Bio Sciences*.
45. **Badwaik, A. S., et al.** (2011). Evaluation of the reproductive toxicity of *Oxalis corniculata* in male rats. *Journal of Advanced Pharmaceutical Technology & Research*.
46. **Badwaik, A. S., et al.** (2011). Evaluation of the reproductive toxicity of *Oxalis corniculata* in male rats. *Journal of Advanced Pharmaceutical Technology & Research*.
47. **Nagulendran, K. R., et al.** (2007). In vitro antioxidant activity of *Cyperus rotundus*. *Journal of Ethnopharmacology*.
48. **Sivapalan, S. R.** (2013). Medicinal uses of *Cyperus rotundus* in traditional systems of medicine. *International Journal of Pharmacology and Pharmaceutical Technology*.
49. **Sreeja, S., et al.** (2010). The 8-prenylnaringenin content of fenugreek and its estrogenic activity. *Journal of Herbal Medicine*.
50. **Hajimehdipoor, H., et al.** (2012). The effect of *Trigonella foenum-graecum* on polycystic ovary syndrome. *Journal of Medicinal Plants*.
51. **Mukherjee, P. K., et al.** (1997). The Sacred Lotus (*Nelumbo nucifera*) - A Review. *Phytotherapy Research*.
52. **Sridhar, K. R., & Bhat, R.** (2007). Lotus—A potential nutraceutical source. *Food Reviews International*.
53. **Singh, S., et al.** (2009). *Argemone mexicana*: A review on its Indian traditional uses, phytochemistry and pharmacology. *Journal of Ethnopharmacology*.
54. **Bhattacharjee, I., et al.** (2006). Antibacterial efficiency of *Argemone mexicana* L. stem extract. *Fitoterapia*.
55. **Rathod, J. D., et al.** (2011). *Bambusa arundinacea*: A Review. *International Journal of Pharma Reports*.
56. **Nirmala, C., et al.** (2018). Bamboo: A Rich Source of Natural Antioxidants and its Applications in the Food and Pharmaceutical Industry. *Trends in Food Science & Technology*.
57. **Malviya, S., et al.** (2011). Antidiabetic potential of *Acacia nilotica* (L.) Willd. ex Delile. (Focus on Polyphenolic content).

58. **Ali, A., et al.** (2012). Phytochemical and pharmacological properties of *Acacia nilotica*: A review. *Journal of Pharmacy and Phytotherapeutics*.
59. **Vengaiah, P. C., et al.** (2013). Nutritional composition of palm jaggery. *Journal of Food Science and Technology*.
60. **Sharma, H., et al.** (2010). The effect of ghee (clarified butter) on serum lipid levels and microsomal lipid peroxidation.
61. **Shah, K. A., et al.** (2010). *Mangifera indica* (Mango): Monograph. *Pharmacognosy Reviews*.
62. **Sreelatha, S., & Padma, P. R.** (2009). Antioxidant activity of *Moringa oleifera* leaves/seeds. *Food and Chemical Toxicology*.
63. **Colagar, A. H., et al.** (2009). Zinc levels in seminal plasma and its relationship with sperm quality.
64. **Nidhi, R., et al. (2012).** Effect of a yoga program on glucose metabolism and blood lipid levels in adolescent girls with polycystic ovary syndrome. *International Journal of Gynecology & Obstetrics*.
65. **Pascoe, M. C., & Bauer, I. E. (2015).** A systematic review of randomised control trials on the effects of yoga on stress measures and inflammatory markers. *Biological Psychology*.
66. **Sharma, R., et al. (2013).** Lifestyle factors and reproductive health: Taking control of your fertility. *Reproductive Biology and Endocrinology*.