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Abstract 

The increasing use of Internet of Things (IoT) devices in various application areas has led to the creation 

of unprecedented capabilities in data generation, while also giving rise to fundamental challenges in terms 

of scalability, security, and intelligent processing. The traditional centralized cloud model faces latency 

constraints and privacy risks associated with the large-scale deployment of IoT devices [1], [2]. This paper 

proposes a new hierarchical federated learning (HFL) system specifically tailored for use in heterogeneous 

IoT settings, which combines edge intelligence with blockchain-secured communication channels to 

overcome the above-stated fundamental limitations [6]. Our system implementation includes adaptive 

model aggregation techniques and differential privacy mechanisms to achieve a balance between learning 

accuracy and privacy preservation [10]. 

By conducting extensive experimentation across three diverse IoT application domains, namely smart 

healthcare, industrial automation, and city infrastructure, we show the efficacy of our framework in 

achieving an average latency reduction of 47% over traditional cloud-centric designs while preserving 

model accuracy within 3.2% of the centralized baselines [3], [4]. Our proposed design framework proves 

to be especially useful in resource-scarce settings, where it achieves a 34% decrease in energy expenditure 

during training phases while also being able to enforce effective security measures against potential 

threats. 

 

Keywords: Internet of Things 1, Federated Learning 2, Edge Computing 3, IoT Security 4, Artificial 

Intelligence of Things (AIoT) 5, Privacy-Preserving Analytics 6. 

 

1. Introduction 

The Internet of Things (IoT) ecosystem has grown at an exponential rate, with projections of over 75 

billion connected devices by the year 2025. This is expected to revolutionize various industries such as 

healthcare, manufacturing, agriculture, and smart city infrastructure through pervasive data sensing and 

automation [1], [2]. However, the traditional centralized model of data processing, where the raw data 
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from the sensors is sent to cloud servers for processing and analysis, is facing increasing challenges. These 

include unacceptably high latency for time-critical applications, prohibitively high bandwidth usage, and 

severe privacy risks as the data passes through various network segments [1]. 

The recent trends of edge computing and distributed artificial intelligence provide attractive solutions by 

performing computations closer to the source of the data [7]. Federated learning (FL) is one such 

promising technique, which allows multiple devices to jointly train a model without sharing the original 

data [3], [4]. Although theoretically appealing, existing FL architectures face some challenges in practical 

IoT settings with heterogeneity in devices, variability in networks, and imbalanced resource distribution. 

Recent works have shown substantial accuracy drops of up to 15 percentage points when conventional FL 

is used in practical IoT settings with non-IID data distributions across devices [8]. 

This study tackles these issues by proposing a new hierarchical system that manages learning processes 

across three different levels: endpoint devices, edge servers, and cloud coordinators. Our system proposes 

several new ideas: (1) adaptive clustering algorithms that automatically organize devices with different 

data distributions, (2) blockchain systems for secure model aggregation and verification [6], and (3) 

context-aware resource allocation algorithms that manage the learning effectiveness and operational costs. 

We test this system on various IoT applications, using rigorous statistical analysis techniques to measure 

the improvement in learning performance in terms of latency, accuracy, security, and energy costs. 

The main contributions of this research are: (1) the design of a complete HFL framework architecture 

adapted to the constraints of IoT, (2) the implementation and evaluation of the framework in different 

application domains, (3) the analysis of the trade-offs between privacy and utility through differential 

privacy [10], and (4) the open-source release of framework components to encourage the extension of this 

research by the community. By filling the gap between theoretical ideas for distributed learning and the 

practical implementation in IoT, this research promotes the development of secure, scalable, and intelligent 

IoT systems that can support next-generation applications. 

 

2 Related Work 

2.1 IoT Architectures and Paradigms 

Currently, the IoT research community has gradually moved from cloud-centric designs to edge computing 

architectures [1], [2],[15]. Fog computing has been proposed as an interim solution, placing processing 

power between endpoints and cloud infrastructure to mitigate latency. More recently, the notion of AIoT 

(Artificial Intelligence of Things) has come into focus, embedding machine learning functionality within 

IoT devices and edge nodes [9],[11]. This is in response to the increasing demand for real-time analytics 

and autonomous decision-making in applications such as self-driving cars and industrial predictive 

maintenance. 

However, the existing literature shows that there are gaps in the current architectures. It has been found 

that although edge computing helps in reducing latency, it leads to the creation of data silos, which in turn 

restricts the global learning perspective [7]. On the other hand, a decentralized solution faces issues with 

coordination overhead and consistency of the model when deployed on a large scale. The proposed 

hierarchical framework helps in overcoming these issues. 
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2.2 Federated Learning in IoT Contexts 

Federated learning has been identified as a promising approach for privacy-preserving distributed 

intelligence [3], [4]. The ACM Transactions on Internet of Things has tracked the development of FL, 

pointing out the specific difficulties involved in applying FL to resource-constrained IoT settings[14]. The 

main research streams are communication efficiency using model compression methods, robust 

aggregation schemes resilient to Byzantine failures [5], and incentive schemes to promote participation in 

collaborative learning. 

The recent developments presented in special sessions like the IEEE World Forum on IoT’s emphasis on 

collaborative sensing using AI underscore the emerging interest in cross-silo federated learning, where the 

collaboration is between organizations without exchanging sensitive information. Nevertheless, such 

methods generally require a certain degree of homogeneity in the computational resources of the 

participants, which is not the case in IoT networks that include everything from resource-limited sensors 

to powerful edge servers. Our research addresses this issue of heterogeneity. 

2.3 Security and Privacy in Distributed IoT 

Security loopholes are perhaps the biggest hindrances to the widespread adoption of IoT, and high-profile 

attacks have already shown the devastating potential of such compromised devices. The conventional 

security paradigm of perimeter security and trust authorities is simply not scalable in the IoT domain where 

attack surfaces grow exponentially with each new node. A study published in the journal Sensors 

highlights the importance of embedded security and zero-trust models that authenticate every transaction, 

irrespective of its source. 

The use of blockchain technology has been proposed as a possible remedy for trust management in IoT 

networks. However, as has been pointed out in the reviews of the IoT journal [12], the use of blockchain 

technology is not feasible for resource-constrained devices because of the high computational and latency 

costs associated with it. In our solution, we propose a hybrid blockchain system where only critical 

transactions, such as model aggregation verification and anomaly detection, are stored on the blockchain, 

while other operations use lightweight cryptographic protocols. 

 

3 Proposed Framework 

3.1 Hierarchical Architecture Design 

The framework we propose uses a three-tier hierarchical architecture tailored to meet the diverse 

requirements of IoT networks. The first tier is based on endpoint devices such as sensors, actuators, and 

embedded systems, which are responsible for local data acquisition and initial processing. These devices 

run mini-model training using quantized neural networks that are optimized for devices with limited 

computational capabilities. The second tier is made up of edge aggregation nodes that are usually located 

at network gateways or micro-data centers and are responsible for managing learning processes at the 

geographical or logical level. These nodes run adaptive clustering algorithms that automatically cluster 

devices according to data distribution patterns, computational resources, and network connectivity. The 

third tier is made up of cloud coordinators that manage global convergence processes while enforcing 

overall security policies using blockchain verification systems. 
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This architecture brings several important innovations. Firstly, the context-aware clustering process goes 

beyond geographical proximity and takes into account the semantics of the data and the capabilities of the 

devices when creating learning groups. Secondly, the asynchronous aggregation protocol enables devices 

with different availability patterns, which is a common property of IoT networks, to contribute to the 

learning process without halting it. Thirdly, the integration of differential privacy uses calibrated noise at 

different levels of the hierarchy. 

Table 1: Framework Components and Functions 

Tier Components Primary Functions Resource Profile 

Endpoint 

Devices 

Sensors, actuators, 

embedded systems 

Data collection, local 

model training, 

lightweight inference 

Constrained (limited 

power, computation, 

storage) 

Edge 

Aggregators 

Gateway devices, 

micro-servers 

Cluster coordination, 

intermediate 

aggregation, anomaly 

detection 

Moderate (sustained 

power, substantial 

computation) 

Cloud 

Coordinators 

Central servers, 

blockchain validators 

Global aggregation, 

model distribution, 

security verification 

Abundant (unlimited 

power, high-

performance 

computation) 

3.2 Adaptive Learning Algorithms 

The fundamental learning mechanism uses federated averaging (FedAvg) as its baseline but modifies it 

with some IoT-specific adjustments. Unlike the conventional FedAvg algorithm, which gives the same 

importance to all devices, our solution uses weighted aggregation depending on the quality scores. The 

contribution of each device to the overall model is weighted based on a composite measure that takes into 

account (1) data representativeness in the device’s cluster, (2) past reliability in previous rounds of 

training, and (3) available resources for the current computation. 

To counter the ubiquitous problem of non-IID data distributions in IoT settings, where data distributions 

are fundamentally different for devices in different locations or settings, we propose a personalized 

learning solution. Each device will maintain a global model part and a personalized part, which will be 

specific to the context of each device. When aggregating, only the global parts are shared and averaged, 

while the personalized parts are kept local. This is a critical requirement in IoT settings, where 

environmental conditions have a significant impact on data characteristics. 

3.3 Security and Privacy Mechanisms 

Our security architecture follows a defense-in-depth strategy with various protection mechanisms at each 

hierarchical level. At the device level, trusted execution environments (TEEs) protect local model training 

tasks, and lightweight homomorphic encryption supports privacy-preserving gradient transfer. Edge 

aggregators use multi-party computation protocols to securely aggregate gradients without decrypting 

them. At the cloud level, a permissioned blockchain maintains an immutable record of aggregation and 

model versioning, providing an audit trail for verification and anomaly detection. 
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The privacy framework combines Rényi differential privacy with adaptive noise scaling based on data 

sensitivity and trust. In contrast to traditional differential privacy methods, which add the same amount of 

noise to the data irrespective of the scenario, our system adapts the privacy parameters based on (1) the 

type of data being processed (for example, healthcare data versus environmental data), (2) the trust level 

of the devices involved, and (3) the requirements of the learning task. This allows us to achieve the best 

possible utility while still ensuring strong privacy guarantees, which is a major drawback of traditional 

privacy mechanisms that are not adaptable. 

 

4 Methodology 

4.1 Experimental Setup and Implementation 

We developed the proposed framework using Python 3.9 with PyTorch 1.12 for machine learning tasks 

and Hyperledger Fabric 2.4 for blockchain development. The testbed for our experiments included 342 

simulated IoT devices, which were divided into three application domains: (1) a smart healthcare setting 

with wearable sensors and healthcare monitoring devices, (2) an industrial automation domain with robotic 

systems and quality control sensors, and (3) an urban infrastructure application that included traffic 

monitoring devices, environmental sensors, and surveillance cameras. To reflect real-world heterogeneity, 

we simulated six different device types with different processing power, ranging from ARM Cortex-M4 

microcontrollers to NVIDIA Jetson edge computing processors. 

The data collection process took four months, resulting in a total of 2.7 TB multimodal sensor data. For 

each of the application domains, we have identified specific learning tasks, including patient anomaly 

detection in healthcare, predictive maintenance in industrial environments, and traffic pattern optimization 

for infrastructure in urban areas. These tasks were chosen to cover the range of IoT applications and to 

allow for comparison of performance. 

4.2 Statistical Tools and Evaluation Metrics 

We used a broad range of statistical tools to assess framework performance. Multivariate regression 

analysis related system variables (such as cluster size and aggregation rate) to performance metrics (such 

as accuracy and latency). Bayesian inference models placed probability distributions on important 

performance values, adding uncertainty assessment to point estimation. Survival analysis with Cox 

proportional hazards models analyzed system reliability and failure rates for different operational 

scenarios. 

Table 2: Statistical Evaluation Metrics and Tools 

Evaluation 

Dimension 

Primary Metrics Statistical Tools Measurement 

Frequency 

Learning 

Performance 

Accuracy, F1-score, AUC-ROC Confidence intervals, 

ANOVA, Bayesian 

inference 

Per training round 

System 

Efficiency 

Latency, energy consumption, 

bandwidth usage 

Regression analysis, 

time-series 

decomposition 

Continuous 

monitoring 
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Security & 

Privacy 

Attack detection rate, privacy budget 

consumption 

Survival analysis, 

statistical 

hypothesis testing 

Per security event 

Scalability Convergence time,  

communication overhead 

Complexity analysis, 

scalability testing 

Per system scale 

increase 

 

Performance assessment was done using task-agnostic metrics (accuracy, precision, and recall for learning 

tasks) and system metrics (latency, energy, and communication overhead). To set up rigorous baselines, 

we compared our framework with three other alternatives: (1) centralized cloud learning, (2) traditional 

federated learning without hierarchy, and (3) edge-only learning without cloud coordination. All three 

baselines used the same neural network architecture and training data. 

 

4.3 Data Partitioning and Simulation of Real-World Conditions 

To better simulate the real-world distribution of IoT data, we introduced non-IID data partitioning based 

on geographical location, time patterns, and sensor types. In the healthcare application, patient data was 

partitioned according to demographic information and health conditions. In the industrial automation 

application, data distribution was based on different machine models, usage patterns, and maintenance 

records. In the urban infrastructure application, data distribution included spatial correlations and time 

patterns such as rush hour traffic and seasonal variations. 

We also simulated real-world network conditions using traces from actual IoT networks, which included 

varying bandwidth, periodic disconnections, and diverse latency characteristics. The availability patterns 

of devices were based on realistic usage patterns, with some devices (such as industrial sensors) always 

being connected and others (such as mobile health monitors) being intermittently available. Such real-

world conditions made our evaluation more practical and less like a lab experiment. 

 

5 Results and Analysis 

5.1 Learning Performance Across Application Domains 

The hierarchical federated learning framework showed robust learning performance on all three IoT 

application domains, with mean accuracy within 3.2% of centralized learning performance, while offering 

greatly improved privacy protection. On the healthcare application domain, the framework reported 92.7% 

accuracy on patient anomaly detection, compared to 95.1% accuracy for centralized learning—a very 

small loss in performance for the privacy gains. The industrial predictive maintenance problem also 

showed similar performance, with 88.3% accuracy compared to 90.9% for centralized methods. Notably, 

however, the framework performed very well on the urban infrastructure application domain, with 94.2% 

accuracy on traffic pattern classification compared to 95.8% for centralized learning—a mere 1.6% 

difference. 

These findings significantly outperform the baseline (non-hierarchical) federated learning methods, which 

showed 12-18% accuracy loss compared to centralized settings under the same non-IID data distribution. 

The accuracy preservation is mainly due to our adaptive clustering method, which assigns devices with 
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different data distributions into the same cluster to form a more representative local dataset. The accuracy 

results were analyzed using mixed-effects models, and the results showed that the clustering approach 

accounted for 67% of the variance in accuracy results (F(3, 112)=24.7, p<0.001), and geographical-

semantic clustering performed better than geographical clustering by 8.3 percentage points on average. 

5.2 System Efficiency and Resource Utilization 

The framework provided a huge boost to efficiency gains in all the measured aspects. The end-to-end 

latency for full training cycles was on average 47% lower than cloud-centric solutions, reducing from 4.7 

hours to 2.5 hours for standard model convergence. The energy consumption provided even more dramatic 

efficiency gains, with the endpoint devices reducing their energy usage for training tasks by an average of 

34% compared to standard federated learning protocols. This is due to optimized computation scheduling 

and hierarchical model compression according to the energy budget of the devices. 

Communication efficiency showed particularly significant improvements, with bandwidth usage reduced 

by 71% compared to centralized methods that simply relayed sensor readings to cloud servers. The 

hierarchical aggregation topology helps avoid redundant messages by compressing data progressively as 

it ascends the hierarchy. Notably, the efficiency improvements had very little correlation with accuracy 

loss, as measured by Pearson correlation coefficients between bandwidth reduction and accuracy loss that 

ranged from -0.12 to 0.08 depending on the application domain. 

 
5.3 Security Effectiveness and Privacy Analysis 

Security analysis utilized both analytical verification of cryptographic protocols and empirical validation 

against simulated attacks. The framework was able to correctly identify 96.3% of injection attacks[13], 

89.7% of model poisoning attacks, and 100% of impersonation attacks during extensive validation. The 

hybrid blockchain implementation was found to be highly useful in the identification of coordinated 
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attacks launched from multiple devices, utilizing the immutable ledger to detect malicious patterns that 

would otherwise go undetected by traditional intrusion detection systems. 

Privacy analysis used formal verification techniques to ensure the correctness of differential privacy 

claims, verifying that the ε-values were in the acceptable range of 2.1 to 3.8 for all application scenarios. 

The adaptive privacy budgeting system adjusted noise scales according to the sensitivity of the data, 

providing the highest level of protection to healthcare applications (ε=2.1) and slightly less stringent 

conditions for environmental monitoring (ε=3.8) to improve utility. This was more effective than uniform 

privacy implementations, which either protected nonsensitive data too much (degrading utility) or 

sensitive data insufficiently (increasing risk). 

 

6 Conclusion and Future Work 

6.1 Summary of Contributions 

In this study, a new hierarchical federated learning framework has been introduced, implemented, and 

assessed for its performance in heterogeneous IoT settings. The proposed framework overcomes the 

limitations of existing solutions by incorporating adaptive clustering, multi-level aggregation, and 

security-privacy solutions. The results obtained from the experiments conducted on various application 

domains have confirmed the effectiveness of the proposed framework in achieving centralized accuracy 

with significant improvements in latency, energy consumption, and privacy preservation. 

The crucial innovations of context-aware device clustering, personalized global learning, and adaptive 

privacy budgeting, working in concert, target the trio of challenges to IoT intelligence: heterogeneity, 

scalability, and security. By striking a delicate balance among these conflicting requirements through 

architectural thinking rather than optimization after the fact, this framework offers a sustainable way 

forward for ever more complex IoT environments. The open-sourcing of implementation pieces is 

intended to facilitate community adoption and extension, especially in resource-constrained settings where 

current approaches fall short. 

6.2 Practical Implications and Deployment Considerations 

For system architects and developers of IoT systems, this research provides both a reference architecture 

and implementation advice on the deployment of intelligent and privacy-preserving applications. The 

hierarchical approach is particularly suited for large-scale deployments that already have natural 

organizational boundaries, such as multinational corporations with regional structures or public 

infrastructure with municipal, regional, and national parts. The modularity of the proposed framework also 

supports its incremental deployment, where hierarchical learning can be incrementally introduced for 

individual subsystems before being applied to the whole enterprise. 

Improvements in energy efficiency have profound implications for sustainable IoT development. 

Bandwidth savings also have profound implications for the successful deployment of IoT in bandwidth-

limited environments such as rural settings, developing countries, and aerial or maritime settings. Energy 

efficiency and bandwidth savings can significantly reduce costs of operation while increasing the 

applicability of sustainable IoT solutions. 
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6.3 Future Research Directions 

Several promising research avenues can be identified from this work. Cross-silo federated learning is a 

challenging area when it comes to trust establishment and incentive alignment, which are domains where 

blockchain technology can be applied for purposes other than security. The ability to support lifelong 

learning is another important frontier that enables IoT systems to adapt to changing environments without 

forgetting what they have learned before. 

Integration with quantum-resistant cryptography[11] offers a visionary security improvement, especially 

for IoT networks with longer lifecycles. In a similar manner, integration with neuromorphic computing 

may offer more power-efficient edge learning by translating neural networks from software to hardware. 

Lastly, standardization for hierarchical federated learning protocols would offer better interoperability 

between various vendor ecosystems, thus speeding up innovation in this increasingly important area. 
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