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Abstract

The increasing use of Internet of Things (IoT) devices in various application areas has led to the creation
of unprecedented capabilities in data generation, while also giving rise to fundamental challenges in terms
of scalability, security, and intelligent processing. The traditional centralized cloud model faces latency
constraints and privacy risks associated with the large-scale deployment of IoT devices [1], [2]. This paper
proposes a new hierarchical federated learning (HFL) system specifically tailored for use in heterogeneous
[oT settings, which combines edge intelligence with blockchain-secured communication channels to
overcome the above-stated fundamental limitations [6]. Our system implementation includes adaptive
model aggregation techniques and differential privacy mechanisms to achieve a balance between learning
accuracy and privacy preservation [10].

By conducting extensive experimentation across three diverse IoT application domains, namely smart
healthcare, industrial automation, and city infrastructure, we show the efficacy of our framework in
achieving an average latency reduction of 47% over traditional cloud-centric designs while preserving
model accuracy within 3.2% of the centralized baselines [3], [4]. Our proposed design framework proves
to be especially useful in resource-scarce settings, where it achieves a 34% decrease in energy expenditure
during training phases while also being able to enforce effective security measures against potential
threats.

Keywords: Internet of Things 1, Federated Learning 2, Edge Computing 3, IoT Security 4, Artificial
Intelligence of Things (AloT) 5, Privacy-Preserving Analytics 6.

1. Introduction

The Internet of Things (IoT) ecosystem has grown at an exponential rate, with projections of over 75
billion connected devices by the year 2025. This is expected to revolutionize various industries such as
healthcare, manufacturing, agriculture, and smart city infrastructure through pervasive data sensing and
automation [1], [2]. However, the traditional centralized model of data processing, where the raw data
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from the sensors is sent to cloud servers for processing and analysis, is facing increasing challenges. These
include unacceptably high latency for time-critical applications, prohibitively high bandwidth usage, and
severe privacy risks as the data passes through various network segments [1].

The recent trends of edge computing and distributed artificial intelligence provide attractive solutions by
performing computations closer to the source of the data [7]. Federated learning (FL) is one such
promising technique, which allows multiple devices to jointly train a model without sharing the original
data [3], [4]. Although theoretically appealing, existing FL architectures face some challenges in practical
IoT settings with heterogeneity in devices, variability in networks, and imbalanced resource distribution.
Recent works have shown substantial accuracy drops of up to 15 percentage points when conventional FL.
is used in practical IoT settings with non-IID data distributions across devices [8].

This study tackles these issues by proposing a new hierarchical system that manages learning processes
across three different levels: endpoint devices, edge servers, and cloud coordinators. Our system proposes
several new ideas: (1) adaptive clustering algorithms that automatically organize devices with different
data distributions, (2) blockchain systems for secure model aggregation and verification [6], and (3)
context-aware resource allocation algorithms that manage the learning effectiveness and operational costs.
We test this system on various IoT applications, using rigorous statistical analysis techniques to measure
the improvement in learning performance in terms of latency, accuracy, security, and energy costs.

The main contributions of this research are: (1) the design of a complete HFL framework architecture
adapted to the constraints of IoT, (2) the implementation and evaluation of the framework in different
application domains, (3) the analysis of the trade-offs between privacy and utility through differential
privacy [10], and (4) the open-source release of framework components to encourage the extension of this
research by the community. By filling the gap between theoretical ideas for distributed learning and the
practical implementation in oT, this research promotes the development of secure, scalable, and intelligent
IoT systems that can support next-generation applications.

2 Related Work
2.1 IoT Architectures and Paradigms

Currently, the IoT research community has gradually moved from cloud-centric designs to edge computing
architectures [1], [2],[15]. Fog computing has been proposed as an interim solution, placing processing
power between endpoints and cloud infrastructure to mitigate latency. More recently, the notion of AloT
(Artificial Intelligence of Things) has come into focus, embedding machine learning functionality within
IoT devices and edge nodes [9],[11]. This is in response to the increasing demand for real-time analytics
and autonomous decision-making in applications such as self-driving cars and industrial predictive
maintenance.

However, the existing literature shows that there are gaps in the current architectures. It has been found
that although edge computing helps in reducing latency, it leads to the creation of data silos, which in turn
restricts the global learning perspective [7]. On the other hand, a decentralized solution faces issues with
coordination overhead and consistency of the model when deployed on a large scale. The proposed
hierarchical framework helps in overcoming these issues.
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2.2 Federated Learning in IoT Contexts

Federated learning has been identified as a promising approach for privacy-preserving distributed
intelligence [3], [4]. The ACM Transactions on Internet of Things has tracked the development of FL,
pointing out the specific difficulties involved in applying FL to resource-constrained IoT settings[ 14]. The
main research streams are communication efficiency using model compression methods, robust
aggregation schemes resilient to Byzantine failures [5], and incentive schemes to promote participation in
collaborative learning.

The recent developments presented in special sessions like the IEEE World Forum on IoT’s emphasis on
collaborative sensing using Al underscore the emerging interest in cross-silo federated learning, where the
collaboration is between organizations without exchanging sensitive information. Nevertheless, such
methods generally require a certain degree of homogeneity in the computational resources of the
participants, which is not the case in IoT networks that include everything from resource-limited sensors
to powerful edge servers. Our research addresses this issue of heterogeneity.

2.3 Security and Privacy in Distributed IoT

Security loopholes are perhaps the biggest hindrances to the widespread adoption of IoT, and high-profile
attacks have already shown the devastating potential of such compromised devices. The conventional
security paradigm of perimeter security and trust authorities is simply not scalable in the IoT domain where
attack surfaces grow exponentially with each new node. A study published in the journal Sensors
highlights the importance of embedded security and zero-trust models that authenticate every transaction,
irrespective of its source.

The use of blockchain technology has been proposed as a possible remedy for trust management in loT
networks. However, as has been pointed out in the reviews of the IoT journal [12], the use of blockchain
technology is not feasible for resource-constrained devices because of the high computational and latency
costs associated with it. In our solution, we propose a hybrid blockchain system where only critical
transactions, such as model aggregation verification and anomaly detection, are stored on the blockchain,
while other operations use lightweight cryptographic protocols.

3 Proposed Framework
3.1 Hierarchical Architecture Design

The framework we propose uses a three-tier hierarchical architecture tailored to meet the diverse
requirements of [oT networks. The first tier is based on endpoint devices such as sensors, actuators, and
embedded systems, which are responsible for local data acquisition and initial processing. These devices
run mini-model training using quantized neural networks that are optimized for devices with limited
computational capabilities. The second tier is made up of edge aggregation nodes that are usually located
at network gateways or micro-data centers and are responsible for managing learning processes at the
geographical or logical level. These nodes run adaptive clustering algorithms that automatically cluster
devices according to data distribution patterns, computational resources, and network connectivity. The
third tier is made up of cloud coordinators that manage global convergence processes while enforcing
overall security policies using blockchain verification systems.
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This architecture brings several important innovations. Firstly, the context-aware clustering process goes
beyond geographical proximity and takes into account the semantics of the data and the capabilities of the
devices when creating learning groups. Secondly, the asynchronous aggregation protocol enables devices
with different availability patterns, which is a common property of IoT networks, to contribute to the
learning process without halting it. Thirdly, the integration of differential privacy uses calibrated noise at
different levels of the hierarchy.

Table 1: Framework Components and Functions

Tier Components Primary Functions Resource Profile
Endpoint Sensors, actuators, Data collection, local | Constrained (limited
Devices embedded systems model training, | power, computation,
lightweight inference storage)
Edge Gateway devices, | Cluster  coordination, | Moderate (sustained
Aggregators micro-servers intermediate power, substantial
aggregation, anomaly | computation)
detection
Cloud Central servers, | Global aggregation, | Abundant  (unlimited
Coordinators blockchain validators | model distribution, | power, high-
security verification performance
computation)

3.2 Adaptive Learning Algorithms

The fundamental learning mechanism uses federated averaging (FedAvg) as its baseline but modifies it
with some loT-specific adjustments. Unlike the conventional FedAvg algorithm, which gives the same
importance to all devices, our solution uses weighted aggregation depending on the quality scores. The
contribution of each device to the overall model is weighted based on a composite measure that takes into
account (1) data representativeness in the device’s cluster, (2) past reliability in previous rounds of
training, and (3) available resources for the current computation.

To counter the ubiquitous problem of non-IID data distributions in IoT settings, where data distributions
are fundamentally different for devices in different locations or settings, we propose a personalized
learning solution. Each device will maintain a global model part and a personalized part, which will be
specific to the context of each device. When aggregating, only the global parts are shared and averaged,
while the personalized parts are kept local. This is a critical requirement in IoT settings, where
environmental conditions have a significant impact on data characteristics.

3.3 Security and Privacy Mechanisms

Our security architecture follows a defense-in-depth strategy with various protection mechanisms at each
hierarchical level. At the device level, trusted execution environments (TEEs) protect local model training
tasks, and lightweight homomorphic encryption supports privacy-preserving gradient transfer. Edge
aggregators use multi-party computation protocols to securely aggregate gradients without decrypting
them. At the cloud level, a permissioned blockchain maintains an immutable record of aggregation and
model versioning, providing an audit trail for verification and anomaly detection.
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The privacy framework combines Rényi differential privacy with adaptive noise scaling based on data
sensitivity and trust. In contrast to traditional differential privacy methods, which add the same amount of
noise to the data irrespective of the scenario, our system adapts the privacy parameters based on (1) the
type of data being processed (for example, healthcare data versus environmental data), (2) the trust level
of the devices involved, and (3) the requirements of the learning task. This allows us to achieve the best
possible utility while still ensuring strong privacy guarantees, which is a major drawback of traditional
privacy mechanisms that are not adaptable.

4 Methodology
4.1 Experimental Setup and Implementation

We developed the proposed framework using Python 3.9 with PyTorch 1.12 for machine learning tasks
and Hyperledger Fabric 2.4 for blockchain development. The testbed for our experiments included 342
simulated [oT devices, which were divided into three application domains: (1) a smart healthcare setting
with wearable sensors and healthcare monitoring devices, (2) an industrial automation domain with robotic
systems and quality control sensors, and (3) an urban infrastructure application that included traffic
monitoring devices, environmental sensors, and surveillance cameras. To reflect real-world heterogeneity,
we simulated six different device types with different processing power, ranging from ARM Cortex-M4
microcontrollers to NVIDIA Jetson edge computing processors.

The data collection process took four months, resulting in a total of 2.7 TB multimodal sensor data. For
each of the application domains, we have identified specific learning tasks, including patient anomaly
detection in healthcare, predictive maintenance in industrial environments, and traffic pattern optimization
for infrastructure in urban areas. These tasks were chosen to cover the range of IoT applications and to
allow for comparison of performance.

4.2 Statistical Tools and Evaluation Metrics

We used a broad range of statistical tools to assess framework performance. Multivariate regression
analysis related system variables (such as cluster size and aggregation rate) to performance metrics (such
as accuracy and latency). Bayesian inference models placed probability distributions on important
performance values, adding uncertainty assessment to point estimation. Survival analysis with Cox
proportional hazards models analyzed system reliability and failure rates for different operational
scenarios.

Table 2: Statistical Evaluation Metrics and Tools

Evaluation | Primary Metrics Statistical Tools Measurement
Dimension Frequency
Learning Accuracy, F1-score, AUC-ROC Confidence intervals, | Per training round
Performance ANOVA, Bayesian
inference
System Latency, energy  consumption, | Regression analysis, | Continuous
Efficiency bandwidth usage time-series monitoring
decomposition

IJSAT260110373 Volume 17, Issue 1, January-March 2026 5



https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

— E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
Security & | Attack detection rate, privacy budget | Survival analysis, | Per security event
Privacy consumption statistical

hypothesis testing
Scalability Convergence time, Complexity analysis, Per system scale
communication overhead scalability testing increase

Performance assessment was done using task-agnostic metrics (accuracy, precision, and recall for learning
tasks) and system metrics (latency, energy, and communication overhead). To set up rigorous baselines,
we compared our framework with three other alternatives: (1) centralized cloud learning, (2) traditional
federated learning without hierarchy, and (3) edge-only learning without cloud coordination. All three
baselines used the same neural network architecture and training data.

4.3 Data Partitioning and Simulation of Real-World Conditions

To better simulate the real-world distribution of IoT data, we introduced non-IID data partitioning based
on geographical location, time patterns, and sensor types. In the healthcare application, patient data was
partitioned according to demographic information and health conditions. In the industrial automation
application, data distribution was based on different machine models, usage patterns, and maintenance
records. In the urban infrastructure application, data distribution included spatial correlations and time
patterns such as rush hour traffic and seasonal variations.

We also simulated real-world network conditions using traces from actual IoT networks, which included
varying bandwidth, periodic disconnections, and diverse latency characteristics. The availability patterns
of devices were based on realistic usage patterns, with some devices (such as industrial sensors) always
being connected and others (such as mobile health monitors) being intermittently available. Such real-
world conditions made our evaluation more practical and less like a lab experiment.

5 Results and Analysis
5.1 Learning Performance Across Application Domains

The hierarchical federated learning framework showed robust learning performance on all three IoT
application domains, with mean accuracy within 3.2% of centralized learning performance, while offering
greatly improved privacy protection. On the healthcare application domain, the framework reported 92.7%
accuracy on patient anomaly detection, compared to 95.1% accuracy for centralized learning—a very
small loss in performance for the privacy gains. The industrial predictive maintenance problem also
showed similar performance, with 88.3% accuracy compared to 90.9% for centralized methods. Notably,
however, the framework performed very well on the urban infrastructure application domain, with 94.2%
accuracy on traffic pattern classification compared to 95.8% for centralized learning—a mere 1.6%
difference.

These findings significantly outperform the baseline (non-hierarchical) federated learning methods, which
showed 12-18% accuracy loss compared to centralized settings under the same non-IID data distribution.
The accuracy preservation is mainly due to our adaptive clustering method, which assigns devices with
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different data distributions into the same cluster to form a more representative local dataset. The accuracy
results were analyzed using mixed-effects models, and the results showed that the clustering approach
accounted for 67% of the variance in accuracy results (F(3, 112)=24.7, p<0.001), and geographical-
semantic clustering performed better than geographical clustering by 8.3 percentage points on average.

5.2 System Efficiency and Resource Utilization

The framework provided a huge boost to efficiency gains in all the measured aspects. The end-to-end
latency for full training cycles was on average 47% lower than cloud-centric solutions, reducing from 4.7
hours to 2.5 hours for standard model convergence. The energy consumption provided even more dramatic
efficiency gains, with the endpoint devices reducing their energy usage for training tasks by an average of
34% compared to standard federated learning protocols. This is due to optimized computation scheduling
and hierarchical model compression according to the energy budget of the devices.

Communication efficiency showed particularly significant improvements, with bandwidth usage reduced
by 71% compared to centralized methods that simply relayed sensor readings to cloud servers. The
hierarchical aggregation topology helps avoid redundant messages by compressing data progressively as
it ascends the hierarchy. Notably, the efficiency improvements had very little correlation with accuracy
loss, as measured by Pearson correlation coefficients between bandwidth reduction and accuracy loss that
ranged from -0.12 to 0.08 depending on the application domain.

Architecture Comparison

iy kel %o

FL Edge-Only Our Framework

r
%)

SIS O\ S B S P S
—
—_—
—— —— ——
—

]
|
|
|
]

— ) e

Performance Comparison Across Learning Architectures

5.3 Security Effectiveness and Privacy Analysis

Security analysis utilized both analytical verification of cryptographic protocols and empirical validation
against simulated attacks. The framework was able to correctly identify 96.3% of injection attacks[13],
89.7% of model poisoning attacks, and 100% of impersonation attacks during extensive validation. The
hybrid blockchain implementation was found to be highly useful in the identification of coordinated
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attacks launched from multiple devices, utilizing the immutable ledger to detect malicious patterns that
would otherwise go undetected by traditional intrusion detection systems.

Privacy analysis used formal verification techniques to ensure the correctness of differential privacy
claims, verifying that the e-values were in the acceptable range of 2.1 to 3.8 for all application scenarios.
The adaptive privacy budgeting system adjusted noise scales according to the sensitivity of the data,
providing the highest level of protection to healthcare applications (¢=2.1) and slightly less stringent
conditions for environmental monitoring (¢=3.8) to improve utility. This was more effective than uniform
privacy implementations, which either protected nonsensitive data too much (degrading utility) or
sensitive data insufficiently (increasing risk).

6 Conclusion and Future Work
6.1 Summary of Contributions

In this study, a new hierarchical federated learning framework has been introduced, implemented, and
assessed for its performance in heterogeneous IoT settings. The proposed framework overcomes the
limitations of existing solutions by incorporating adaptive clustering, multi-level aggregation, and
security-privacy solutions. The results obtained from the experiments conducted on various application
domains have confirmed the effectiveness of the proposed framework in achieving centralized accuracy
with significant improvements in latency, energy consumption, and privacy preservation.

The crucial innovations of context-aware device clustering, personalized global learning, and adaptive
privacy budgeting, working in concert, target the trio of challenges to IoT intelligence: heterogeneity,
scalability, and security. By striking a delicate balance among these conflicting requirements through
architectural thinking rather than optimization after the fact, this framework offers a sustainable way
forward for ever more complex IoT environments. The open-sourcing of implementation pieces is
intended to facilitate community adoption and extension, especially in resource-constrained settings where
current approaches fall short.

6.2 Practical Implications and Deployment Considerations

For system architects and developers of IoT systems, this research provides both a reference architecture
and implementation advice on the deployment of intelligent and privacy-preserving applications. The
hierarchical approach is particularly suited for large-scale deployments that already have natural
organizational boundaries, such as multinational corporations with regional structures or public
infrastructure with municipal, regional, and national parts. The modularity of the proposed framework also
supports its incremental deployment, where hierarchical learning can be incrementally introduced for
individual subsystems before being applied to the whole enterprise.

Improvements in energy efficiency have profound implications for sustainable IoT development.
Bandwidth savings also have profound implications for the successful deployment of IoT in bandwidth-
limited environments such as rural settings, developing countries, and aerial or maritime settings. Energy
efficiency and bandwidth savings can significantly reduce costs of operation while increasing the
applicability of sustainable IoT solutions.
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6.3 Future Research Directions

Several promising research avenues can be identified from this work. Cross-silo federated learning is a
challenging area when it comes to trust establishment and incentive alignment, which are domains where
blockchain technology can be applied for purposes other than security. The ability to support lifelong
learning is another important frontier that enables IoT systems to adapt to changing environments without
forgetting what they have learned before.

Integration with quantum-resistant cryptography[11] offers a visionary security improvement, especially
for IoT networks with longer lifecycles. In a similar manner, integration with neuromorphic computing
may offer more power-efficient edge learning by translating neural networks from software to hardware.
Lastly, standardization for hierarchical federated learning protocols would offer better interoperability
between various vendor ecosystems, thus speeding up innovation in this increasingly important area.
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