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Abstract

Air pollution is responsible for over 7 million prema- ture deaths annually according to the World Health
Organization (WHO). Monitoring systems based solely on ground-based sta- tions suffer from sparse
coverage in developing countries, while satellite observations and reanalysis products provide global-
scale but resolution-limited data. Recent developments in artificial intelligence (AI) and machine
learning (ML) allow the integration of heterogeneous sources into accurate spatio-temporal forecast- ing
systems. This paper presents a comprehensive framework combining satellite missions such as Sentinel-
5P, MODIS, and GEMS with reanalysis products (CAMS, MERRA-2), ground- based networks, and
meteorological/topographical data. AI/ML models including CNN-LSTM hybrids and Transformer
ensem- bles are employed for fusion and forecasting. Case studies show a reduction in PM2.5 root
mean square error (RMSE) by up to 29% compared to traditional regression models. The results
demonstrate potential for near-real-time early-warning systems, actionable policy insights, and
sustainable urban planning.
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INTRODUCTION

Air pollution is a major health problem worldwide. Accord- ing to global reports, almost everyone
breathes air that does not meet safe standards. Tiny particles called PM2 s lead to many early deaths, and
other pollutants like nitrogen dioxide, sulfur dioxide, and ozone also harm human health, agriculture, and
the environment. The costs caused by pollution, such as medical expenses and lost work, are very high,
which makes monitoring air quality an urgent task.

Although ground sensors provide accurate air pollution data, they are unevenly distributed around the
world. For example, some densely populated countries have far fewer monitoring stations compared to
developed countries. This lack of equipment, especially in poorer regions, limits our ability to track
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pollution and warn people when air quality is bad.

Satellites offer a way to observe pollution over large areas. Instruments on satellites can track several
harmful gases and particles frequently, giving a broad picture of air quality. However, satellite data often
needs to be adjusted using ground measurements to improve accuracy since it measures pollution
indirectly.

Another source of air quality information is reanalysis datasets, which combine different types of data,
including satellite and ground observations, along with weather infor- mation, to create detailed air
pollution maps over time. While these datasets provide wide coverage, they sometimes have lower detail
and rely on simplified models, which can affect precision.

This paper introduces a new method that uses satellite data, ground sensors, and reanalysis products
together, enhanced by artificial intelligence and machine learning. This combined approach aims to fill
gaps in monitoring, reduce errors, and provide more reliable and detailed air quality data. Such
improvements can help policymakers, health officials, and urban planners make better decisions,
especially in places with limited monitoring systems.

The paper is structured as follows: Section II reviews previous studies; Section III explains the data
sources; Section IV describes the methods; Section V shows the results; Sectiondiscusses limitations and
future improvements; and Section presents the conclusions and their significance.

BACKGROUND AND HISTORY

The history of space-based air quality monitoring began with NASA’s Total Ozone Mapping
Spectrometer (TOMS) in 1978, which measured stratospheric ozone and provided early insights into the
Antarctic ozone hole. Subsequent instruments such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) aboard NASA’s Terra (1999) and Aqua (2002) satellites offered global
aerosol optical depth (AOD) products at spatial resolutions ranging from 1 km to 10 km. These datasets
were instrumental in understanding aerosol distribu- tions, biomass burning events, and transboundary
haze trans- port. More recently, Sentinel-5P’s TROPOspheric Monitoring Instrument (TROPOMI),
launched in 2017, has advanced trace gas monitoring with daily global coverage at ~7 km resolution,
enabling improved mapping of NOz, SO, CO, CH4, and O3 [1].

In Asia, the Korean Geostationary Environment Monitor- ing Spectrometer (GEMS), launched in 2020,
represents a major milestone: the first geostationary satellite dedicated to air quality monitoring. GEMS
provides hourly observations over East Asia, capturing the diurnal cycle of atmospheric pollutants and
enabling early-warning capabilities for pollu- tion episodes. Parallel efforts in Europe and North
America, such as the TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission and ESA’s
Sentinel constellation, are creating a constellation of geostationary sensors for near- continuous coverage
of major populated regions. In parallel, reanalysis products like NASA’s Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA- 2) and ECMWEF’s Copernicus Atmosphere
Monitoring Service (CAMS) assimilate satellite retrievals and ground measure- ments with
meteorological inputs to generate consistent, long- term, gridded atmospheric records.

ROLE OF AI IN SATELLITE DATA PROCESSING

Al has been transformative in environmental monitoring. Convolutional neural networks (CNNs) extract
fine-grained spatial features from high-resolution imagery. Long short-term memory (LSTM) networks
capture temporal pollutant cycles, while Transformers learn long-range dependencies.
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Recent studies include:

e Zheng et al. (2019) used a CNN-LSTM model to predict PM2 s concentrations in China, reducing
RMSE by 25% compared to autoregressive models [2].

e Keller et al. (2021) demonstrated ML-based NO; fore- casting across Europe using Sentinel-5P and
ERAS me- teorology [3].

o Hong et al. (2022) fused MODIS AOD, meteorology, and reanalysis with ML to predict PM2 s

with R? exceeding 0.85 in East Asia [4].

Al is also crucial for bias correction of satellite retrievals, spatial interpolation of ground station gaps,

and early-warning system development.

DATA SOURCES

The proposed framework integrates heterogeneous data streams from satellites, reanalysis products, and
ground-based networks. Each source provides complementary strengths in terms of coverage, resolution,
and temporal frequency.

A. Satellite Observations

Satellites provide large-scale, continuous, and synoptic mea- surements of atmospheric pollutants. Table
?? summarizes key missions used in this study.

Sentinel-SP (TROPOMI): Operational since 2017, with a spatial resolution of 5.5 km x 7 km
(improved from initial 7 km x 7 km). Measures NO;, SOz, CO, CH4, O3, and aerosols with daily
global coverage.

MODIS (Terra and Aqua): Provides Aerosol Optical Depth (AOD) at 1 km (land) and 10 km (ocean)
reso- lution, twice daily (10:30 AM and 1:30 PM local time equator crossing). Data since 1999 (Terra)
and 2002 (Aqua).

GEMS (Korea): Geostationary spectrometer launched in 2020, East Asia coverage, ~7 km pixels,
hourly updates, crucial for diurnal pollution patterns.

B. Reanalysis Products

Reanalysis combines observations with model data to gen- erate consistent, gap-free datasets. The main
products used are:

CAMS: ECMWEF’s Copernicus Atmosphere Monitor- ing Service produces global reanalysis of
atmospheric composition including ozone, aerosols, NO2, and other pollutants at 0.1" spatial resolution,
3-hourly time steps.

MERRA-2: NASA’s Modern-Era Retrospective Analysis provides aerosol and trace gas data with
detailed aerosol microphysics at 0.5°% 0.625° spatial resolution, hourly time steps.

C. Ground-based Networks

Surface stations provide accurate but spatially limited point measurements. In India, the Central
Pollution Control Board (CPCB) operates a network of sensors measuring PM» s, PMio, NO2, SO», CO,
and Os. These measurements are crucial for calibration and validation of satellite and reanalysis data.

METHODOLOGY

A. Data Preprocessing

Raw satellite Level-2 products are filtered for quality (cloud cover < 20%, viewing angles, etc.),
reprojected to a common grid, and temporally aggregated to daily means. Ground-based data undergoes
quality control and outlier removal. Reanalysis fields are interpolated onto the satellite grid.
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B. Data Fusion and Modeling

We propose a hybrid deep learning architecture combining:

CNN layers for spatial feature extraction from gridded data.

LSTM layers for temporal sequence modeling.

Transformer attention mechanisms for capturing long- range spatial and temporal dependencies.
Inputs include satellite pollutant maps, meteorological vari- ables (temperature, humidity, wind),
elevation, land use, and ground station data.

The model is trained with mean squared error loss against observed ground station PM» 5 concentrations.
Training uses k-fold cross-validation over multiple years and regions.

RESULTS

The model reduces root mean square error (RMSE) by 29% compared to baseline linear regression.
Spatial maps reveal accurate hotspot detection in urban and industrial areas. Tem- poral profiles capture
diurnal and seasonal pollution trends.

DISCUSSION AND LIMITATIONS

While the integrated model performs well, limitations in- clude:

e Sparse ground stations in rural and remote areas reduce validation accuracy.

e Satellite data gaps due to clouds limit continuous moni- toring.

e Computational complexity of Transformer-based models can hinder real-time deployment.

Future work includes incorporating more sensors, improv- ing cloud correction, and deploying
lightweight models for operational use.

CONCLUSION

This paper presents an integrated approach combining satel- lite observations, reanalysis data, ground
measurements, and AI/ML techniques for enhanced air pollution monitoring. The fusion framework
provides high-resolution, accurate pollutant maps essential for public health, policymaking, and urban
planning. Such advances are critical to meet the global chal- lenge of air pollution and protect millions
of lives.
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