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ABSTRACT

This article deals with the determination of temperature distribution, displacement and thermal
stresses of a rectangular plate having nonhomogeneous material properties with internal heat
generation. The plate is subjected to sectional heating. All the material properties except Poisson’s
ratio and density are assumed to be given by a simple power law along x direction. Solution of the
two-dimensional heat conduction equation is obtained in the transient state. Integral transform
method is used to solve the system of fundamental equation of heat conduction. The effects of
inhomogeneity on temperature and thermal stress distributions are examined. For theoretical treatment,
all the physical and mechanical quantities are taken as dimensional, whereas for numerical
computations we have considered non-dimensional parameters. The transient state temperature
field and its associated thermal stresses are discussed for a mixture of copper and zinc metals in the
ratio 70:30 respectively. Numerical calculations are carried out for both homogeneous and
nonhomogeneous cases and are represented graphically.

Keywords: Stresses; Inhomogeneity; Heat source; Shear modulus; Simple power law.

1 INTRODUCTION
Finctionallyu graded materials (FGMs) refer to the composite materials where the compositions or

he overall properties of FGM are unique and different from any of the individual material that forms
it. As the field of functionally graded minerals has advanced, the study of nonhomogeneous
solids has also gained revived importance. From the perspective of continuum mechanics,
these materials can be regarded as nonhomogeneous solids which are modeled by variable
elasticity moduli. Al-Hajri and Kalla [1] developed a new integral transform and its inversion
involving combination of Bessel’s function as a kernel and used it to solve mixed boundary value
problems. Ding and Li [4] studied the thermoelastic analysis of nonhomogeneous structural
materials. Gupta and Singhal [6] studied the thermal effect on vibration of non-homogeneous
orthotropic visco-elastic rectangular plate of parabolically varying thickness having clamped
boundary conditions on all the four edges. Gupta et al. [7] presented an analysis of the forced
vibrations of non-homogeneous rectangular plate of variable thickness on the basis of classical
plate theory by assuming the non-homogeneity of the plate material to arise due to the variation in
density which is assumed to vary linearly. Hata [8] studied thermal stresses in a nonhomogeneous
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thick plate with surface radiation under steady state temperature distribution. Kassir [9]
investigated thermal stress problems in a thick plate and a semi-infinite body in nonhomogeneous
solids. Kawamura et al. [10] studied the thermoelastic deformation and stress analyses of an
orthotropic nonhomogeneous rectangular plate. Kumar [11] studied the free transverse
vibrations of thin simply supported nonhomogeneous isotropic rectangular plates of bilinearly
varying thickness with elastically restrained edges against rotation. Lal and Kumar [12] analyzed
the buckling and vibration behaviour of nonhomogeneous rectangular plates of uniform thickness
on the basis of classical plate theory when the two opposite edges are simply supported and
are subjected to linearly varying in-plane force by assuming young’s modulus and density of
the plate to vary exponentially along axial direction. Manthena et al. [13] studied the
temperature distribution, displacement and thermal stresses in a rectangular plate with
inhomogeneous material properties by taking the material properties to vary along y coordinate.
Martynyak and Dmytriv [14] investigated the generalized plane stressed state of a rectangle of
isotropic functionally gradient materials under the action of normal load using finite-element
method. Morishita and Tanigawa [15] considered a nonhomogeneous semi-infinite body subject
to an arbitrary shaped distributed load on its boundary surface as an analytical model, in
which the fundamental equations system for the medium are given by three kinds of displacement
functions. Muravskii [16] studied the action of surface vertical and horizontal forces applied to
the half-space. Pandita and Kulkarni [17] studied the effect of variable thermal conductivity in
thermal stress analysis of rectangular plate subjected to temperature variation. Sharma et al.
[18] used Differential Quadrature Method (DQM) to analyse free vibration of non-homogeneous
orthotropic rectangular plates of parabolically varying thickness resting on Winkler-type elastic
foundation. Sugano [19] analyzed a plane thermoelastic problem in a nonhomogeneous doubly
connected region under a transient temperature field by stress function method. Tanigawa et al.
[20] presented thermal bending analysis of a laminated composite rectangular plate due to a
partially distributed heat supply by introducing the methods of finite cosine transform and
Laplace transform to the temperature field and adapted the classical plate theory based on
Kirchhoff-Love's hypothesis to the thermoelastic field. Tanigawa [21] briefly discussed the method
of analytical development of thermoelastic problems for nonhomogeneous materials where both
the thermal and mechanical material constants are described by the function of the variable of
coordinate system. Tanigawa et al.

[22] established analytical method of development for the plane isothermal and
thermoelastic problems by introducing two kinds of displacement functions. Tokovyy and Ma
[23] presented a method for solving the plane elasticity and thermoelasticity problems for planes
and half-planes which exhibit inhomogeneous material properties in one of the planar directions
Wang and Wang  [24] presented the exact solutions for the vibration problems of
nonhomogeneous rectangular membranes with an exponential density distribution and with a
linear  density distribution. The behaviour of non-homogeneity has been assumed due to
exponential variation in Young’s moduli and density in one direction. Yang et al. [25] developed a
general two-dimensional solution for a bilayer functionally graded -cantilever beam with
concentrated loads at the free end.

In this paper we have extended our own work [13]. Here we have considered a rectangular plate
occupying the space a <x < b, 0 <y <L subjected to sectional heating and internal heat generation.
The material properties except Poisson’s ratio and density are assumed to be nonhomogeneous
given by a simple power law in x direction. The solutions are obtained in the transient state in
the form of Bessel’s and trigonometric functions. For theoretical treatment all physical and
mechanical quantities are taken as dimensional, whereas for numerical computations we have
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considered non-dimensional parameters. Numerical computations are carried out by considering
various values ofthe inhomogeneous parameter m.

2 STATEMENT OF THE PROBLEM

2.1 Heat conduction equation

We consider the transient heat conduction equation with initial and boundary conditions in a
rectangular plate with heat source given by [13]

& (030 = 5 ) rewrnn=cee I )
I'=71{x.y), at i=10
=0, atx=ag, 0=y=l t=0
=0, atx=pf, 02yl t>0 (7
T=7x.0), ay=0, hsx<p t>0
=10, aty=L_ aZx<h t>0

where A(x) and c(x) are respectively, thermal conductivity and calorific capacity of the
material in the inhomogeneous region, p is the density.

2.2 Thermoelastic equations

Let uy and u), be the displacement components in the in-plane directions of x and y. The

strain-displacement components gjj , equilibrium equations of the forces and stress-strain
components in y direction disregarding the body forces are given by [13]

_&f_x - _aﬂ’y 1[6zfx+5ﬂy}

R T

3)

oo 00y, 00y
00xx | »_o 20 PCw_ @
ox oy ox oy

2
O xx :EG(X}[EH vy, —(1+v)a(x)T]

o

= G(x)[veyy, + Eyy — (I+v)a(x)T] for plane stress field (5)
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We assume that shear modulus of elasticity G and the coefficient of linear thermal expansion
o(x) have an inhomogeneous material property in x direction and are changed arbitrarily in its
direction, but Poisson’s ratio D is assumed to be constant. We consider G (x) and « (x) given by
simple power law [13]
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G (x) = GO(x/ L)m ,_G(x) = @0(x/ L)m Y.

Here GO and @0 are the reference values of shear modulus of elasticity and coefficient of
linear thermal expansion respectively. Also m (> 0) is a constant which is related to Poisson’s ratio v
by the relation mv=1-2v.

2.3 Plane stress field

Using Egs. (3) and (5) in (4) the displacement equations of equilibrium in x andy directions are

obtained as: , Pu, u, 1+vdu, 109G (ou, 0uy) 2(1+v)
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2.4 Plane strain field

Similarly, the equilibrium equations in terms of displacement components are obtained by using Egs.
(3) and (6) into

(4) as:
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The solution of Eqgs. (8) and (9) without body forces can be expressed by the Goodier's
thermoelastic displacement potential ¢ and the Boussinesq harmonic functions ¢ and ¥ as:

"'I ""I =T
o E"r ’ -rf?.t (10)
u, = E£+£+ v =(3-dvp

oy ;A‘]. r..l

In which the three functions must satisfy the conditions

p=kr slp=10 and 32'4-";"=D =(11]

, 2 2 1+

where V :6x—2+? » K(x)= (l—a( x) is the restraint coefficient and 7 = 7 - 77, 7i is the initial

temperature. Now by using Eqgs. (7) and (10) in Egs. (5) and (8) and then in Egs. (6) and (9) the
results for thermoelastic fields

are obtained as

2.5 For plane stress field

The equations for the displacement functions are given by
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The corresponding stress functions are given by
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2.6 Forplane strain field
The fundamental equations for the displacement function are given by
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The corresponding stress functions are given by
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The boundary condition on the traction free surface stress functions are

w0 = gl 0™ Tgly O

(14)

(15)

_[18)
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Egs. (1) to (16) constitute the mathematical formulation of the problem.

3 SOLUTION OF THE PROBLEM
3.1 Heat conduction equation
The heat conduction equation is given by
T ., T o’T o or
axZJrﬂ.{x)ngA{x)aszrG){x,} ,f)—c(x)oa (17)
For the sake of brevity, we consider
Ax)=ofx 1LY e =eox 1LY P= i f1(2:2)=Co 5x )8 2
FrEt) =15 xg)sinh(@X), —a8)
O y.)=(A /I N0, (vt). ©)(t)= S ¥ )5 1)

Alx)

Here Ap, co and pg are the reference values of thermal conductivity, calorific capacity and density,

respectively. Using Eq. (18) in (17), we obtain
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To remove m from the numerator of Eq. (19), we use the variable transformation 7 =x ((1-m)/2) ¢

and obtain
0 1060 »* a0 180
+——t =0 |+ — [+O(y.l)=——
[51’2 x Ax XE ) [6}2} I(J’a) x Ot (21)
where Y2 = ((m-1)/2)
O=0p ™V S xSy ¥ o). att=0
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6=0._ atx=p, O0SysL.t>0 _(22)
B= 0 U S(x x ) siah((T¥). aty =0 _a=xzh.t >0
G=0_ aty=L. aSx=h .|t >0

To solve the differential Eq. (21) using integral transform technique, we introduce the extended
integral transform [1] of order i over the variable x as given below (Refer Appendix A).b
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B
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a

Here 5 t_}”% | is the kernel ofthe transform given by
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positive roots of the transcendental equation B
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Applying finite Fourier sine transform to Eq. (28) and using the boundary conditions given in Eq. (29), we obtain
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The kernel of the transform is sin(n 7y /L) . Applying Laplace transform and its inverse on Eq.
(30) by using the initial condition given in Eq. (31), we obtain

5(;?,{): 4 ¢ +A4 exp(-A7)+
A]—w

exp(—m1)+ exp(or)+A;exp(—A4,(1 -1,))0*( —1,) (32)

2&:-2‘41 20+ 24

where 44 =Qpgo v sin(n wyo /L. Here 8 * (¢ - t0) is the Heaviside Theta function given by

0, 1<t

6*{({0)={

I, 1>1,

Applying inverse Fourier sine transform on Eq. (32) and following [3], we obtain

a0

00073 (Orgo sl @I )/ L1+ BGu)sin (v /1)) _33)

".lll

Applying inverse transform defined in Eq. (26) on the above equation, we obtain

oy a)=2 Z Z 0,g,sinh(e)[(L - })/L]+9(nr]sm{mr} /L) XS (,x),x >0 (34)

S(ri)

Using Eq. (34) in the equation T =x ((1-7)/2) 9 we obtain

}1?‘.'1

T,y.f)= _l >_ & X010 sish( @OIL -y)/ L1+ B(n.t)sin (e my /DXy (x) _633)

where

& =15, 1@ =x @M [z, cox(¥ logx) W sin(¥ logx)]. x >0

3.2 Thermoelastic equations
Using the solution of heat conduction Eq. (17) given by Eq. (35), the solutions for
Goodier's thermoelastic displacement potential ¢ from Eq. (11) is obtained as:

2 - K[ (x,p,0)-T (x,y.0T,]
p=72 2 (36)

i=l n=l g?—(x’y "')
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220y 8) = g3y t) + gy ) _

£3() = & XI0ig0 s DN —p)/ L]+ O()sin (n 7y / L)]x ) (x)
g4y )= & x[O(nt) o sin(n Ty | L)1X 21 (x)

satisfyy Eq. (11) as:

p=Y= Z Z {sinh(p £)[4, cos( }] logx ) + By sin(_V logx )]sin(y )} _(37)

i=l n=I1

where 4, . B, are constants.

Now, to obtain the displacement components, we substitute the valves of @, . % from Eqs. (36) and (37) in Eq.
(10} and obtain

u, = Z tsinh(pr)ite, + 0+ ¥ )4, (7 /X kin(y, logx )+ B, (7 /¥ )eos( ¥ logx VJsin(v 1}
w=l - i

o

iy 'Z {sinh(p1)} 15?; + 1+ V)14, cosl 7 log x )+ 3, siﬂ{_ya' logx Y]eos(y 1} (38)

(3=4v)|4, cosiy, logx )+ B, sin(y, logx )]sin(y )}
where a comma denotes differentiation with respect to the following variable.
By substituting the values of displacement components given by Eq. (38) in Egs. (13) and (15),
the resulting components of stresses in plane stress field and plane strain field can be
obtained. By using the traction free conditions given by Eq. (16) in the equation of stresses (13)
and (15), the constants 4,, and B; can be obtained.

Since the equations of stresses and constants 4, and B, obtained so are very large, we have

not mentioned them here. However numerical calculations are carried out by using Mathematica
software.

4 NUMERICAL RESULTS AND DISCUSSION
The numerical computations have been carried out for a mixture of Copper and Zinc metals [5, 8]
in the ratio 70:30 respectively, with non-dimensional variables as given below.

T S — ¥ K _ (T
f=— , I=—, J==, = — (i, 0, )= ——"—,
Ty L ’ L - o K8, L

{"'Tn.i "D-_I'. 'd_'i_r ) . 1+

" — T - —_— .Ilk J:—ﬂ'l
(O Ty Oy ) EG 0, L P

with parameters L = 2cm . a= lgm. &= 3cm. { = I sec. Reference Temperature Eg =32°C . Thermal expansion

coefficient & = 17x107¢ # €. Thermal diffusivity ;o= 111 cm? /zec. The Young's moduluz £ iz given by the
following equation [3, 8]

E(x)=(0.14-00%x —0.93x? + 3.72¢ % —10.28x )x0.8x 10"V /cm’
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Here x - weight ofzine = 100 , 05x <03 . Forx =03, £ =4963=10° N /end’

For different values of parameter m . the Poisson’s ratio V' and Shear modulus G are calculated by using the
formula mV=1—2V. Gy =[E/ (2(1=V1)]

For m =0, Poisson’s ratio V' = 0.5 , Shear modulus Gy = 1.654x10°N /e’

For m =1, Poisson’s ratio V' = 0.33 , Shear modulus Gy = 1.866x10° W /cm’

For m =2 , Poisson’s ratio V= 0.23 , Shear modulus Gy = 1.985x10° ' /em®

For m =3 . Poisson's ratio V' = 0.2 . Shear modulus Gy = 2.0679=10% NV / em?
For m = 4 . Poisson’s ratio V = 0.1667 . Shear modulus Gy = 2.127=x106 N / om®

Fig.1 (a) shows the variation of dimensionless temperature along x—axis for
different values  of parameter m = 0, 1, 2, 3, 4 . From the graph it is seen that the nature is
exponential. Due to internal heat source, the temperature has a finite value at the outer part of the
plate. Because of the sectional heating at the outer part, the absolute value of temperature is slowly
and steadily increasing towards the inner region of the plate. The magnitude of temperature is
increasing with increase in the parameter m. The magnitude of temperature is low in the
homogeneous region m =0 and is peak in the nonhomogeneous region m =4 .

Fig. 1(b) shows the variation of dimensionless temperature along y—axis for different values of
parameter m. From the graph it is seen that the nature is sinusoidal. The temperatu;e is increasing in
the region 0 <y < 0.35 and then suddenly decreasing towards the end in the region 0.35<y <I
and gradually approaching zero at the upper part of the plate. Thermal energy is accumulated in
the middle region at y = 0.35 causing material deformation. Also the magnitude of temperature is
peak in the central part of the plate at y = 0.5 in the nonhomogeneous region, whereas it is peak at
v = 0.4 for the remaining values of m_

(a) (b)
Fig.1
a)Variation of dimensionless temperature along x—axis. b)Variation of dimensionless temperature
along y—axis.
Figs. 2(a) and 2(b) shows the variation of dimensionless displacement uy  along x—axis and y-

axis respectively for different values of parameter m. Along x-axis, it is seen that the absolute value
of displacement is increasing and is peak at the rightmost end atx = 1.5, where the heat is applied.
Also the magnitude of displacement is high in the nonhomogeneous region as compared to that of
homogeneous region. In the nonhomogeneous region the magnitude is high for m =2 and is found

IJSAT26019646 Volume 17, Issue 1, January-March 2026 10
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to be decreased with increase in the parameter m. Along y-axis, it is seen that the no displacement is
happening at the lower end. Also it is increasing and towards the upper part of the plate.
Figs. 3(a) and 3(b) shows the variation of dimensionless displacement uy along x—axis and y-

axis respectively for different values of parameter m. Along x-axis, due to the application of heat
source at the upper part of x— axis x = 1.5, it is observed that the absolute value of
displacement is exponentially increasing and is peak at the upper part. The displacement has
high magnitude in the homogeneous region m =0 as compared to that of nonhomogeneous
region and is slowly decreasing with the increase in the parameter m. Along y-axis, it is seen that
the displacement is increasing in 0 <y < 0.45 for the homogeneous region m = 0 and then
decreasing towards the end. Whereas in the nonhomogeneous region, the absolute value of
displacement is increasing for 0 <y < 0.65 and then decreasing towards the end.

(@) (b)
Fig.2
a) Variation of dimensionless displacement u, along x—axis. b) Variation of dimensionless

displacement u, along y—axis.

(@) (b)
Fig.3
a) Variation of dimensionless displacement uj, along x—axis. b) Variation of dimensionless

displacement uy along y—axis.

Fig. 4(a) shows the variation of dimensionless stresses in the plane stress field along x—axis for
different values of parameter m. It is seen that the stresses oxy ,0xy are exponentially increasing

IJSAT26019646 Volume 17, Issue 1, January-March 2026 11
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along x—axis in both homogeneous and nonhomogeneous regions. The absolute value of the
stresses oxy ,0yy 1s more in the homogeneous region as compared to nonhomogeneous region,

whereas for the stress oy it is more in the nonhomogeneous region as compared to
homogeneous region. The stresses oxx ,oyy are tensile while the stress oy, is compressive in
both homogeneous and nonhomogeneous regions.

Fig. 4(b) shows the variation of dimensionless stresses in the plane stress field along y—axis for
different values of parameter m. It is seen that all the stress oy, has a peak value at the upper part

of the plate and is tensile and is gradually decreasing towards the lower part of the plate and
becoming zero at the lower part in both homogeneous and nonhomogeneous regions. The absolute
value of the stress oy) is peak at the lower part of the plate and is decreasing towards the

u_ppe_r part. The stress oy is compressive and its magnitude is a bit high in the
homogeneous region as compared to that of the nonhomogeneous region. We also observe
that the stresses oxy ,0yy are zero at the beginning (irrespective of inhomogeneity parameter m),
which agrees with the prescribed traction free boundary conditions given in Eq. (16).

Fig. 5(a) shows the variation of dimensionless stresses in the plane strain field along x—axis for
different values of parameter m. It is observed that the absolute value of the stresses Oxx »0zz 1S

exponentially increasing along x—axis in both homogeneous and nonhomogeneous regions. The
stresses are tensile and the magnitude is low in the nonhomogeneous region as compared to
homogeneous region. The stress oy, is tensile in the region 0 <x <1.457 and is compressive

towards the end in the nonhomogeneous region, whereas it is compressive throughout, in the
homogeneous region.

Fig. 5(b) shows the variation of dimensionless stresses in the plane strain field along y—axis for
different values of parameter m. It is seen that all the stresses are linearly increasing from the
lower part of the plate towards the upper part. The stresses oyy ,0z; are tensile and have a

peak value at the upper part of the plate in both homogeneous and nonhomogeneous regions.
The magnitude is high in the nonhomogeneous region as compared to that of homogeneous region.

(@) (b)
Fig.4
a) Variation of dimensionless stresses (plane stress field) along x—axis. b) Variation of
dimensionless stresses (plane stress field) along y—axis.
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=0

(@ (b)
Fig.5
a) Variation of dimensionless stresses (plane strain field) along x—axis. b) Variation of
dimensionless stresses (plane strain field) along y—axis.

S CONCLUSIONS

In this paper, we have investigated temperature and thermal stresses in a rectangular plate
subjected to sectional heating. The material properties except Poisson’s ratio and density are
considered to vary by simple power law along x direction. Solution for the transient two-
dimensional heat conduction equation with internal heat generation and its associated thermal
stresses for a rectangular plate with inhomogeneous material properties is obtained in the form of
Bessel’s and trigonometric series. Numerical computations are carried out for a mixture of Copper
and Zinc metals in the ratio 70:30 respectively and the transient state temperature field and
thermal stresses are examined.

The influence of inhomogeneity grading is investigated by changing parameter m. We have
obtained the following results during our investigation.

The nature of temperature distribution and displacement is exponential when plotted along x—
direction and sinusoidal when plotted along y—direction for different values of parameter m.

The nature of stresses in the plane stress field is exponential along x-direction and linear along y-
direction for both homogeneous and nonhomogeneous regions. Whereas in the plane strain field it is
exponential along both x and y-directions.

With increase in the parameter m the magnitude of temperature is found to be increased along
both x and y- directions. Due to internal heat generation, sudden change in temperature is observed
for X >1andY >0.5.

By choosing some different material for numerical computations, particular cases of special
interest can be studied. Also by assigning suitable values to the material parameters in the
equations of temperature and thermal stresses special case study can also be done.
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